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.,, log-spiral array; and an error analysis is performed.,

Finally, depth computation from optical flow using the new sensor is discussed.
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1. INTRODUCTION

This final report covers research done on "A Sensor with Biological Preprocessing
Features" under the sponsorship of the Air Force Office of Scientific Research, covering
the period February 1, 1986 to September 30, 1987.

As a result of the effort, four students have obtained the Master of Science degree in
Electrical Engineering and one student the Doctor of Philosophy degree in Electrical
Engineering [1,2,3,4,5]. Eleven papers have been written, five of which have been pub-
lished [6,7,8,9, 10], one is an invited paper to be published shortly [11], one will be pub-
lished shortly [12], and the rest are under the process of review [13,14,15,16].

Research results obtained through January 1986 were reported in the Final Report
on Grant No. AFOSR-84-0349, "Biological Visual Systems Structures for Machine
Vision Applied to Robotics", Report No. UVA/525647/EE86/101, February 1986 [411.

* A brief summary complemented with results not reported in that report follows in Sec-
tion 2. The main body of this final report contains more recent results. The report is
organized in the order listed below. For clarity and convenience, references have been
listed at the end of each section.
1 . Introduction

2. Review of Previous Work
3. Long Range Qualitative Motion Detection Algorithm
4. A Fast Algorithm for Motion Prediction
5. Pattern Recognition Using the BVS, the C-transform and a Neural Network

* Classifier
" 6. Dual Sensor Implementation and Analysis

7. Depth Computation from Optical Flow
8. Vestibular-ocular Motion for Target Tracking
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2. RE% IEV% OF PREVIOUS WORK

2. I Biological Visual Sensor Configuration

I hree hasic configurations for the image plane were considered: arcs of ring (cailed
Sanq-ular elements' i, circular elements and hexagonal elements, see Fig. 2.1. Design

* >> relatgin the number of concentric rings to the number of elements per ring for the
:1re. ,onneurations were developed. In addition, a program to simulate images that

i ., ,..d he ottained %kith these structures, using real images obtained with a conventional
_ 12 CCD camera, was wntten and used for all subsequent work. Based on the

, ; evk covered by the sensor for a specific optic configuration, the number of pix-
.t .he iog-,piral sensor is orders of magnitude smaller than that of a conventional rec-

:.,.r ,r ,en,,or. for equivalent pixel size in the fovea region. The basic properties of the
MOVS ,ensor :onfiguranon. such as invariance to scaling and rotation about the optical
,, A ,,ere veritied using real images.

..\ddit, ,nal work not included in the report has been done on the use of chain coding
:r the \ix neighborhood computation plane grid. Several binary images were chain-
,,ded for comparison with eight neighborhood coding of conventional images. Due to
the fact that the six neighborhood coding was applied in the computation plane, where
_.* ages have a completely different shape than in the image plane, the chain-length was

not as short as the reduction in number of pixel would seem to indicate, but it was
,:-niticantly shorter than that of the conventional sensor images, nevertheless. In addi-
-inn. the process is faster because only six directions are used. Once the images were
c.hain coded, pattern recognition was performed on them using chain-coded template1. matching ,hich is more convenient than other methods in this case. For example, a cir-
c."e has only one chain direction and chain length, irrespective of size, when it is centered
on the optical axis and the code does not change for other centered objects either.
irrespective of size and rotation.

* 2.2. Edge and Motion Detection with the New Sensor

This part of the research dealt modelling properties of the human peripheral visual
,vstem (HPVS) for edge and motion detection and its application to the new sensor. A
good summary of outstanding research results by other investigators in the area of model-
ling is given in the February 1986 report and in [1].

Edge detection for the arcs-of-ring sensor can be implemented in the computation-

plane's rectangular grid using any of the standard methods such as local neighborhood
operator, Laplacian-Gaussian or global methods related to signal analysis [2, 3]. For the
circular and hexagonal sensors, the computation-plane array is staggered, forming a hex-
agonai array and the following two neighborhood operators can be used:

= a-a,1 la,-a l -,- la1--.a4 I + la1-a -- la-a 6 1 -I a 1a -a 7 1 (2.1)

and

O .. These are. respectively, the absolute value and the Laplacian methods. The abso-
lute value method does not produce zero-crossings and is, consequently, less similar to

A i

%............................................-*
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(a) tampg and Computation Planw. Arc-of -ring.

(b) Inap and Conpuztion Plana. Clmvlar element&.
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HPVS models than methods such as the Laplacian-of-the-Gaussian. In the Laplacian
method positive and negative gray level values around the regions of abrupt intensity

-- change are obtained, and the zero-crossing points between these are chosen as the edges.
In order to eliminate spurious edges in noisy images, an optional thresholding operator
can be applied. The general method is shown in block diagram in Fig. 2.2. Simulations
with synthetic and real images obtained with a 512 by 512 CCD camera and transformed
to the new sensor equivalent image by the technique described in the report. These were
performed using the Laplacian-Gaussian method and the two operators of formulas (2.1)
and (2.2). For synthetic images, the results using (2.1) were practically identical to those
of the Laplacian-Gaussian. For a real image, a noise photograph of a girl's face, Fig.
2.3(a), the results for (2.1) and the L-G are given in Figs. 2.3(b) and (c), respectively.
Notice that the edges are very similar in both cases. These results correspond to a low
resolution circular sensor of 36 rings, 75 elements per ring. More detailed edges are

*O obtained with a higher resolution simulated sensor of 51 rings, 120 elements per ring.
For motion detection, the same approach was used as for edge detection. Biological

motion detection was first reviewed [1] using the two process theory of HVS and then
simulations were performed using the T and U channels [41 for short-range mode. The
procedure for simulation was:
a) Perform spatial convolution S (x ,y .x) = V G*f (x ,y,t)

b) Establish the orientation of zero-crossing contours

c) Apply temporal derivation to S (x,yt): T(x ,y,t) = aS (xy ,t )/at

d) To detect motion at each zero-crossing, a positive value of T indicates motion
* towards the negative side of the crossing; a negative value of T indicates the oppo-

site. The direction of motion is perpendicular to the edge.
e) All the unit directional vectors in an edge region with a given orientation are com-

bined into a single unit vector pointing in that direction. After this operation is per-
formed, unit directional vectors in adjacent regions with different orientation are
combined in the same way, proceeding along the edge, until the complete closed
edge has been processed. This will give the direction of motion. The resolution is
limited to 450 increment. In Fig. 2.4, a square is translated at an angle of 45', as
indicated by the arrow at the center of the square.
The simulation in short-range mode for the new detector is related to intensity based

schemes in computer vision. The simulation procedure was as follows:
a) Apply the six-neighborhood Laplacian operation to the input images.

b) Establish the orientation of zero-crossings for the first frame and apply 7-element
chain coding to the zero-crossing contour to segment the objects.

c) Perform temporal derivation by subtraction, T(x,y,t) = S(x.yj + At)-S(xy.t).

S.q "d) With reference to Fig. 2.5, in which positively marked pixels correspond to high
intensity at edge boundary and negatively marked ones to low intensity, when the
edge is moving towards the negative side as shown in Figs. 2.5(a) and (d), all seven
elements will become positive at the second frame. When the edge is moving
towards the positive side, some elements may remain positive. The direction of

"q (, local motion is perpendicular to edge orientation at zero-crossing and the displace-
ment is limited to two pixels.

I
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Fig, 2.2 Edge Detection Using BVS.

(a) (b)
i.1

(d

' (c) (d)

(a) Original image: a noisy image of a lady's face.
, (b) Simulated circular-element sensor image, image plane.

,,',, (c) Edge detection by Laplac.an-Gaussian method, with thresholding, comp. plane.
. (d) Edge detection by Laplacian method, with thresholding, comp. plane.

Fig. 2.3
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Fig. 2.4. Motion Detection by the PVS.

E E 4

Fig. 2.5. Short-range Motion Detection.

I

1

(a) A circle inside a square (b) The detection motion of a circle
and a square

Fig. 2.6. Motion Detection by the New Sensor.

|I'



e) Combining the directions of local motion along the connected zero-crossings by
vector analysis, the complete motion is derived. The results were all satisfactory.
An example is given in Fig. 2.6. Note that the examples are presented in the image
plane for easy visualization.

References
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3. LONG RANGE QUALITATIVE MOTION DETECTION ALGORITHM

A qualitative algorithm for long-range motion detection has been developed based
upon heuristic rules. It has been tested with both synthetic and real images and it has
produced correct results in all instances. The assumptions necessary for application of
the algorithm are that the image has been segmented and binarized and that a binary edge
is available in the computation plane.

Four cases were considered which can be combined to produce more complex
* scenes:

a) Objects enclosing the optical axis.

b) Objects "enclosing the optical axis slightly." It is necessary to make this distinc-
tion between cases (a) and (c) due to the discrete nature of the process. For a con-
tinuous edge, only (a) and (c) are necessary.

c) Objects not enclosing the optical axis.

d) More than one object, of any type, in the field of view.
For objects enclosing the optical axis, the qualitative algorithm is based on having

the difference image between the perturbed and the original images in the computation
plane; these are called "current image (CI)" and "previous image (PI)," respectively.

The qualitative algorithm is as follows:
Eight (8) position counters are required to keep track of relative positions of points in the
CI and the PI. These counters are called cntcl, cntc2, cntc3, cntc4, and cnrpl, cntp2,
cntp3, cntp4 and they determine which points in each of the frames are in which of the

* four quadrants. Since the polar angle is mapped to the v-axis in the complex plane, the
four quadrants represent four distinct regions along it. The four regions over the v-
domain are shown below. They are

-r/2< v ,n/2 (i)

n it/2< v _3t/2 (ii)

0 0< V !5T (iii)

it < v < 2t (iv)
I

The first two regions are used to detect horizontal motion, or motion along the x-axis,
and the other two to detect vertical motion, or motion along the y-axis.

Once the number of points in each region has been obtained, the following set of
rules decides the direction of motion.

I t; If there are more CI points in Region-(i) than there are PI points in Region.(ii) and.
. at the same time, more PI points in Region-(i) than there are CI points in Region-

(ii), then the motion is in the +x direction. In other words, if the above criteria is
true, the object has moved to the right of its original position.

In a similar manner, if the number of CI points in Region-(ii) is greater than the
I , number of points in Region.(i), and, at the same time, the number of PI points in

% %
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Region.(ii) is greater than the number of CI points in Region-(i), the motion is in
the -x direction. In other words, the object has shifted to the left of its original posi-
tion.

An object is selected to be moving up from its original position if there are more CI
points in Region-(iii) than there are PI points in Region-(iv) and, at the same time,
more PI points in Region-(iii) than there are CI points in Region-(iv).

*""" For downward motion, the number of CI points in Region-(iv) has to be greater than
the number of PI points in Region-(iii) and, simultaneously, the number of PI points
in Region-(iv) has to be greater than the number of CI points which fall in Region-

* (iii).

The verbal description of the detection of horizontal and vertical motion can be
confusing. A mathematical formulation describes the situation more succinctly. Let NP
be the number of PI points in Region-(i). By the same token, Np2 Nc, Nc2 represent the
number of PI points in Region-(ii), and the number of CI points in Region-(i) and
Region-(ii) respectively. Then, if

Nc > N and Np > N
0

motion is in the +x direction. Using the same convention, if

N > N and N > N
C2  P p C

motion is in the -x direction.

Defining Np , Nc3, Nc, to represent the number of PI and CI points in Region-
(iii) and Region-(iv) respectively, if

Nc >NP, and Np >Nc,

motion is in the +y or upward direction, Similarly, if

Nc, > Np3 and Np, > NC3

6) motion is in the -y or downward direction.

3.1. Algorithm Testing

The Qualitative Algorithm was tested to have performed satisfactorily with both line
images, and synthetically generated two dimensional images. One of the major assump-

. tions made was that an edge image was available to the algorithm. In both cases .ertain
aspects of the images were ideal. The chief of these idealizations was that the edges
were well defined and, in most case, one pixel width thick. Noise was introduced in the
images to check the robustness of the algorithms, but the edges of the objects weie still
well defined because of the low content of the noise. In other words, in all of the test
cases, the signal-to-noise ratio of the information content of the image was extremely
high.

00
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The algorithm was then tested with real images, and it was noted that the edges
were not so well defined. In order to remedy this situation, a very high contrast back-
ground was used. This provided much better edge information. Once the edges were

.' obtained, the motion of the object was computer simulated. Tests with actual physical

motion of the objects were not run.

3.2. Problems With Real Images

Real images do not display the ideal properties of either line or synthetically gen-
."crated images. The actual information in the images is quite heavily overlaid by noise
and any attempt made to filter out the noise resulted also in loss of information and hence
distortion of the image. Another problem encountered was t&.at of the background. In
the images used earlier, the background was of a uniform intensity distribution. This,
then, made it a completely negligible entity since it had no features which would either
add to or reduce the complexity of the preprocessing algorithm. The background plays
an important part in finding the difference images which are needed to find the direction
of motion with the qualitative algorithm.

The Gradient operator originally used to detect edges was highly susceptible to
* noise. Hence, a new operator, viz. the Sobel Operator, was utilized to perform edge

detection. T ugh much better than the Gradient Operator as far as noise sensitivity is
concerned, the Sobel Operator produces edges which are on average three pixels wide.
Since one of the ideal conditions assumed was that the width of the edges was only one
pixel, this caused a serious problem in the application of the algorithms. The images thus
have to be heavily preprocessed in order for them to be usable with the qualitative algo-
rithm.

3.3. Schemes for Preprocessing Images

A number of schemes were attempted to solve the above mentioned problems. The
schemes were all extremely time consuming. A discussion of such problems and the
schemes used to counter follows.

The first scheme was used to eliminate the background from the images. A rem-
inder here that the qualitative algorithm uses two images, the second taken a time t after
the first, and based on the positional information derived from such an operation, predicts
the direction of travel. Since the background was common to the two images, it may be
wondered why it has to be eliminated separately. The reason is that a difference image
of the two frames needs to be formed. If the background is not eliminated, it is difficult

Sto segment the object from the background after the difference has been found. It was
thus easier to eliminate the background from the images before computing the difference.

The following sequence was followed. The first step, or filter, enhanced the edges
0' in the images. This was done by convolving the image with a Sobel Operator. The

second step was to binarize the image. It is easiest to deal with binary images because
" . segmentation is an important aspect of the sequence. The images thus obtained were

then stored for use by another filter which subtracted first the background information
* - from both frames and then the two frames from each other.
*0i Though the above successfully eliminated the problem of interference of the back-

ground, one problem remained: the thickness of the edges. This becomes a problem in
.1%,',

m! ,



terms of speed of computation because for an n point representation 9 f the edge, the total
number of operations performed by the algorithm is of the order of n'.

Instead of using edge thinning to solve this problem, another less time consuming
scheme was attempted and has provided quite good results. This scheme introduces two
extra steps in addition to the sequence mentioned above. After binarizing the image, a
second edge enhancement operation is performed on the image, this time using a gra-
dient operator. The gradient operator produces edges which are two pixel wide, thus
reducing the total number of pixels representing the edge.

After the image has been preprocessed, the two images are subtracted from each
other. An average position of difference is calculated and the edges are then recorded
with respect to it. The average position of difference is nothing more than a point
represented by the average x-coordinate and the average y-coordinate over the total
number of points of same intensity on the two frames. This allows the qualitative algo-
rithm for centred figures to be used exclusively with all images.

It should be mentioned here that the qualitative algorithm being used differs slightly
from the scheme utilized with synthetic images. In the earlier case, an edge representa-
non was required, and the number of current image and previous image points in the
difference image were used exclusively to calculate the direction of motion. In the
scheme used here, due to the extremely noisy image, it is not feasible to trace a contour.
Even though the algorithm used earlier did not require continuous edges--a gap of up to 5
pixels width could be tolerated--it was discovered that it failec' to perform well with
images obtained from the camera. Further testing is being carried out on this aspect of
the algorithrm.

One major difference between the present use of the qualitative algorithm and the
previous use is the following: When using synthetic or line images, since the images
underwent a transformation with a computer program, the number of points which consti-
tuted the edges remained constant. Hence the probability of incorrectly selecting a direc-
tion of motion was not very high since the number of points in any region depended
strictly on-the mapping. In other words, since the qualitative algorithm uses the number
of points in the four quadrants as its basis for determination, the inequalities in the

• -number of points in the various regions were due to the placement of the same number of
points in each frame. Preprocessing affects different frames differently in the case of real

,- images. Thus, the number of physical pixels which constitute the current image may be
greater or smaller than the number of pixels which constitute the previous edge image.
Fortunately, The difference is negligible. Since the typical number of points is of the
order of 10,000, a difference of a 100 pixels or so does not constitute a serious error.

3.4. Examples and Further Discussion

In the research conducted on real images it was found that the above aspect of the
qualitative algorithm was unimportant. The new algorithms were tested with 3 real
images. The test objects used were model automobiles.

The results were very encouraging. It was found that even though the pre-processed
images contained all the problems mentioned above, the qualitative algorithm correctly

'. predicted the direction of motion in each case. The test results are shown below.

0-A
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In Fig. 3.1, a car is shown in its initial and moved positions. The movement is to
the left and, since the car rests on a slight incline, down. The images are then prepro-

t cessed in the sequence described earler. A second filter is then used to subtract the back-
ground from the images and then the images from each other. The first step is shown in
Fiz. 3.2, and the difference image shown in Fig. 3.3. Note the straight line in Fig. 3.3
dividing the image into two halves. It is in reference to this line that the position of the
objects is calculated. The equation of this line is given by:

x = average -x -coordinate

As noted earlier, both the x-coordinate and the y-coordinate of the average position are
needed. Only one has been shown here for sake of simplicity. The position information
of the points which constitute the current (CI) and the previous (PI) frames was previ-
ously stored so the new set with respect to the average position of difference is easily
obtained. This data is then presented to the direction determining program which first
performs the complex logarithmic conformal mapping on the set of data points and then
decides upon a direction of motion based on where the points fall in the complex plane.
Referring back to the qualitative algorithm, and comparing it against Table 3.1, we note

4 that the conditions for motion to the left and down are met. Hence the algorithm decides
down and left as the directions of motion. A second example is shown in Figures 3.4, 3.5
and 3.6. The data is once again tabulated and is shown in Table 3.2. As can be seen
from the data and the above relations, the motion of the car is to its right and in a down-
ward direction.

Once again it is emphasized that in the new use of the algorithm the only use we
have of the intersection, or difference, image is to locate a central point. The algorithm

* . performs its operation on the two preprocessed images.

Multiple Objects In the earlier work with line images, it was shown that the qualitative
40 algorithm could handle more than one object in the field of view. The objects were not

bound to each other in any sense. In other words, the different objects could undergo dif-
ferent transformations and the qualitative algorithm could detect the objects and then

* I Number of Points
Region Previous Current
_.-,_ Frame Frame

(i) 1425 2173
(ii) 3181 2433

4 (iii) 1299 3307
(iv) 1526 3080

Table 3.1 Motion to the left and down

|.
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-:'2-Tperform the analysis on them. In order to do so, the algorithm depended upon sharply
"-'-'"defined edges. The way it found the number of objects in the field of view was to find as
-'.'.many starting points as it could by using an algorithm and then finding connected areas.

,.'- The limitation of this method was obviously that it could not detect objects whose edges
-J crossed each other.
"-'".With real images and lack of clearly defined edges, this does not work very well. At

5e-.

'-'.',"present work is being carried out to make the initial algorithm more robust so that it does
'.,,,',,not require as well defined edges as it did before. Work is also being carried out to use
° - the motion of the objects to segment them into various shapes. This, of course, pre-
• supposes rigidity of the objects. Non-rigid motion is a further topic of consideration. In
i! '! . a sense, the non-uniform logarithmic mapping is nonrigid motion because since the shape

;-..-."of the objects is not preserved, it does not matter so much what the initial orientation is.
.-..,-.At present, work is also being done to develop algorithms to derive depth informa-
"'-"tion from the motion of the objects in a plane. For this purpose, a scheme utilizing the
O.. ego-motion of the object is being used. It has been used by various researchers as long as
'-:-"the line of sight and the direction of motion are parallel, or superimposed on each other,
• .-.. there is quite an easy method to derive such information. It is when the two at an angle
-_.. -.- to each other that problems arise. It is in this area that we are working.

... "
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4. A FAST ALGORITHM FOR MOTION PREDICTION

4.1 Introduction

A sensor for machine vision with biological visual features has been studied by
several researchers [1,2,3,41 based on Schultze's model of the retina [5]. According to
this model, the light sensitive array of elements equivalent to the retina, called the

* "image plane" has receptive fields, or pixels, of increasing size towards the periphery,
except for a small region at the center, the fovea, at which pixels are of equal size and
uniform distribution. The fovea is the region of highest visual acuity. Outside the fovea,
the pixels are distributed in rings whose radius increases in size exponentially. Each ring
contains the same number of pixels, all of the same size in a given ring. This pixel

*• configuration in image plane is mapped to the "computation plane", equivalent to the
visual cortex by a logarithmic conformal transformation. Figure 4.1 illustrates the sensor
configuration both in image plane and computation plane. The transformation holds for
all points outside the fovea and it is easy to see that objects scaled or rotated about the
optical axis in image plane remain invariant in shape in computation plane, with shifts
along the u and v axis, respectively, for scaling and rotation. These properties represent
important advantages for image processing [6,7]. Examples of these properties can be
found in [4].

When objects are translated in the image plane, however, the transformation pro-
duces distorted images in computation plane for which it is extremely difficult to perform
motion prediction because, in effect, a simple translation in image plane corresponds to

U Wnonrigid motion in computation plane.

The receptive fields in a biological visual sensor (BVS) are formed by grouping
large numbers of elementary sensors (cones and rods). There seems to be a one to one
correspondence between receptive fields and elementary sensors in the fovea region
[5,81. Outside the fovea, translation on the image plane can be analyzed in a simpler way

*B if elementary sensors are grouped to form essentially a rectangular grid. Depending on
the visual tasks to be performed, different areas in the visual cortex are used. The visual
cortex in primates consists of approximately ten separate areas which are functionally
distinct, but complexly interrelated [8] with functions not yet understood. In a vision sys-
tem emulating some of the features of biological systems, grouping elementary sensors in
a rectangular grid to perform tasks such as tracking, is thus justified. If a single rectangu-

6 lar sensor is used, the non-uniform exponential configuration (or "logspiral") is obtained
from the sensor by means of a logic circuit [17].

In this section, an original one dimensional correlation tracker for motion prediction
is developed and used in both configurations. Two-D motion prediction is performed in
the rectangular tesellation image plane and the rotation and scaling motion is performed
in logspiral's computation plane.

I.

4.2. The Tracking Algorithm

I. The most relevant characteristic of the algorithm to be described below is that the
motion prediction problem is solved without using correspondence. The point-to-point
correspondence (defined as "what point in the new frame corresponds to a given point

V. .
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in the previous frame.") problem is considered by many researchers to be very difficult,
or even unsolvable in practical cases [9,10,11. Several approaches have been proposed
to solve the motion prediction problem without using correspondence [12,13]. The
approach proposed in this paper is different from those and produces good experimental
results with relatively few computations. Translational motion prediction could be used,
in conjunction with the rotation and magnification properties of the logspiral sensor
configuration, to predict motion in three dimensions.

Consider a dynamic scene. In general, the intensity of the light reflected by the
scene will be a function of location and time, I(x,yt). We can define its gradient in this
3D space,

T

VI = L - (4.1)
a x ay at J

and its gradient in 2D geometric space,
T

r al an
V1 = - (4.2)

ax O8y

Let ai be an arbitrary unit vector in (xy,t) space. Then the directional derivative of I(x,t)in the direction of d is

- = LVI 
(4.3)

ds
where

ds = dd + dyf + dti

For uniform illumination, changes in intensity at a point are due to object motion
(assume that other disturbances are inhibited). If the intensity of a point in the object does
not change with respect to s (in other words, an infinitesimal spatial displacement

dI
corresponds to a change dt in time between consecutive frames). then - = 0. Let the unit

ds
vector ,a be given by

Li = c( (x,t),l) (4.4)

where c =( Iv Z - 1) and V(x.,t) is the point velocity. Then, combining (4.3) and (4.4) we
have

7'.V I + - = 0 (4.5)

Eq. (4.5) is known as the constraint equation relating the spatial gradient to the temporal
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dervative for a moving object [141. Let t be the time eteen two ,,uccesve rr:ime,

.= We then have

T -

For
""'- ,1 I (x.t rj - t )

14 7181 t

The approximation of (4.7) is accurate as long as the object motion is relatively small

Using finite increments in (4.5) and replacing v1x.t from (4.6) and - from (4.7),

81 8)1

x - -AV -I (x.t 1- (xt - t) = 0
ax av

or
- 81 8)1

* l(x.t 1 ) : I(x,8) + - X -- Ay (4.8)
ax ay

In order to deal with large object motion, a recursive process is essential. Thus, to obtain
an iterative algorithm, we proceed as follows:

Let's consider only one-dimensional motion for the moment. Rewrite (4.8) as
)I(x ,t ,)

l(xo,t1 ) = I(x,t), AX (4.9)

A 'here

(R1  Sampled' l (x, t h

3'."

(T, } Sampled I r.t,,

and x, is an initial pixel position in the first frame. is an arbitrar, chosen pixel position
in the second frame. Normally, we will choose z, to be equal to r, unless a prion infor-
mation about x is provided. Thus, for any pixel and for a discrete case, we have

*. 8f/t .t ,)

. 0R, : T, - Ax, (4 1C)

.,here

,0
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Now, define the correlation of {T) and (Rj as

C YR)T1 (4.11)

Combine ( .I0) and (4.11) together and for -V =Ax for all 1,yield

! 1 Ilt
Y., - Y ,T,

Ax, = (4.12)

XR,
,

S=1

Similarly, for AxY, expression, we have

yR,- YRT,

? 1 1=1

Ay, = (4.13)

" I/

,1=1 r) ]

where

{R, } = Sampledl (y,t )
L

(T , = Sampled! ,(yj.,) --

In other words, Ay, is estimated in a column direction. y, and >, are as before. To start the
algorithm above, we let

,-x0 = 0

(4.14)

v = , . #Ay

and R i evaluated for the next iteration as

, = Sampled l 't,v.t.
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The iteration process stops when the following conditions occur

I, _ (4 .16 )
i ly, =y-1

or

A., 0.
-> (4.17)

0.

After stopping the iteration process, the final estimated expressions are

,=t (4.18)
"""Ay = Ay,

where n is the number of iterations. Equation (4.18) gives us the estimates within a frac-
tion of pixel accuracy. The final estimates can also be obtained equivalently from the fol-
lowing equations.

Ax = xi - x0
(4.19)

Ay = y, - Yo

These expressions, however, can only give us the estimates within an integer value.

The algorithm developed above is a spatio-temporal type algorithm (gradient algo-
rithm) which is very attractive as far as hardware implementation is concerned [15,16].

l The algorithm utilizes only a point-by-point basis (i.e.; a single-degree-of-freedom corre-
lation) as opposed to conventional correlation. Thus, computation time is significantly
reduced. But, perhaps, the most important feature is its ease of implementation in a
parallel fashion. Horizontal and vertical perturbations can be computed independently
even if the object experiences 2-D motion. The reason for this is that (4.12) and (4.13) are

S.-based on the individual row or column. Thus, rows and columns can be processed simul-
* taneously. Thus, for example, an image of size 64x64 pixels will need 2xtx64 cpu seconds

to compute the perturbations, whereas for the parallel processors with 128 processors, the
time required is t seconds, where t is the processing time to compute the estimate in a
single row. In addition, the algorithm requires computation of gradients. This, in general.

%:. causes a serious problem when the image is severely degraded by noise. In the real image
simulation, we will demonstrate empirically that the algorithm above possesses good
noise immunity and the computation of the gradients does not affect the estimates
severely.

.,-.
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4.2.1. 2D Motion (a general case)

The correlation tracker has been derived considering motion in the x and the
* directions independently, and although it can be applied to motion in the x and v direc-

tions, in general it will not produce good results for motion in both directions simultane-
ously. The problem for general x'y translation is that corresponding rows (and columns)
in frames i and L+I within the moving area will be shifted with respect to each other. For
example, if _x) = 3 pixels and Ay = 5 pixels, the object has moved right by 3 pixels and up
by 5 pixels and rows in frame i+I will be at location k+5 with respect to corresponding
rows in frame i (where k is row number). Hence, if a search is performed for each row in
both the positive and the negative directions to find the best matching row in the second
frame, this problem can be solved. The question remains: how many rows (and columns)
must comprise the search area? This, of course, will depend on how large a motion will
occur between frames which, in turn, depends on sampling rate and object speed. A rea-
sonable figure is to allow for displacements of at most ten percent of the maximum object
dimension in pixels, in both the x and the y directions. The number of search rows will
then be twice the maximum object dimension plus one, in pixels units.

The row under investigation is correlated with all the rows in the search region and
a pixel by pixel estimate is performed. The row which produces the most consistent esti-
mate is likely to be the matching one. This can be best illustrated by Fig. 4.2, where we
search 3 rows above and 3 rows below the ith row in the first frame. If the object, for
example, moves up 2 pixels, then the (k-2)th row in the second frame is perfectly
matched to the row kih in the first frame. That is, the estimate obtained from correlating
these two rows using (4.12) is a consistent estimate. Others will produce inconsistent esti-

* mates. This will become clearer in the simulation on a Gaussian image. It is also possi-
ble that the first iteration, although producing the most consistent result, will not suffice,
so the search region is decreased to a fraction of its previous size and a second iteration is
performed. After the first iteration, in order to determine which is the row with the most
consistent estimation, a histogram of pixel estimates is generated for each row (or
column). The histogram with the smallest variation is chosen as the matching one. After

0ip this first iteration, the average estimate for that row is chosen (nearest integer) as the first
displacement estimate and the reference image (first frame) is moved by that number of
pixels in the estimated direction of motion. A new iteration is now performed using
(4.12) and the process is repeated. As mentioned above, there may be cases in which the
original best matching row is not the same for the second iteration. When the displace-
ment estimate is zero or a fraction of a row less than one half, the iteration process is
stopped. All estimated values are then added to determine the total displacement esti-
mate.

4.2.2. Simulation with a Gaussian Grey Level Image

The algorithm was tested with a bi-valued Gaussian function of the form

p (x,y)= 10?[p P p(x'Y) +P2j (x'Y)l

with

I
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Figure 4.2 Row search mechanism
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The array size is 64x64, -20 < x < 43, -25 < y < 38. Figure 4.3 shows the grey level
image.

The synthetic image was displaced by Ax=3, Ay=3 and a row by row correlation was
* performed using (4.12) with a search area of nine rows. The algorithm is applied only to

the minimum rectangle enclosing the object (tracking window) to be tracked, hence we
are assuming that segmentation has already been performed offline. This needs to be
done only at the start of the operation. In other words, a priori information about target
characteristics such as its size and its location with respect to the reference frame need to
be known. The average displacement estimate for rows in the region containing the

0image when correlated with rows displaced from k-4 to k+4 is shown in Table 4.1. The
corresponding histograms, i.e., the number of occurrences vs estimated displacement for
rows k and k+i, i=-4 to 4, are shown in Fig. 4.4. Comparing the table with the histogram,

J1.. a best match is obtained for a row shift equal to three, with a Ax = 2. In this case, the
matching rows in the second frame produce consistent estimates I-f Ax. Other row shifts

, give estimates of Ax which vary widely in both magnitude and direction. The original
image is now shifted by 2 pixels to the right and a new iteration is performed. A similar

IN.......... .........
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procedure is applied to columns alternatively (or in the case of parallel processing, simul-
taneouslv). This second iteration produces a displacement estimate of Ax 1.00. The
process is repeated and the next iteration results in _x=0.00, thus the iterative procedure is
ended and the estimated displacement in the x direction, according to (4.18) is Ax =2.93930
units or, in integer pixels, 3 pixels.

The procedure is applied simultaneously to rows and columns, i.e., after the first row itera-
tion, the first column iteration is performed, etc. Table 4.11 indicates the results for x and v

Table 4.1 Row correlation for search area, a Gaussian image

Correlation With Row

row k k-4 k-3 k-2 k-I k k+l k+2 k+3 k+4

31 -1229.91 -330.37 -119.03 -56.27 -42.52 170.40 5.49 1.90 2.15
32 !-394.03 -126.39 -50.32 -26.25 -19.56 70.79 2.61 1.90 3.29
33 -132.70 -46.85 -20.10 -9.92 -5.68 3.57 0.23 1.90 4.66
34 -43.65 -16.06 -6.02 -1.17 3.67 -23.65 -1.71 1.90 6.34
35 -13.21 -3.52 0.89 4.42 12.47 -23.96 -3.05 1.90 8.91

- 36 -1.16 3.67 7.11 12.89 67.83 -13.42 -2.98 1.90 12.48
".-. 37 301.63 -188.25 -51.52 -20.50 -8.72 -2.67 1.11 1.86-17.34

38 -5.53 -4.52 -2.84 -0,35 3.32 7.80 9.38 1.83 -7.96
39 -1.27 0.37 3.17 8.04 15.68 21.39 13.88 1.83 -5.14
40 2.71 6.10 12.52 24.18 37.39 31.69 13.52 183 -3.77
41 9.26 17.43 33.79 58.13 59.03 31.46 11.55 1.83 -2.67
42 22.41 43.81 83.73 102.40 60.65 26.03 9.47 1.83 -1.57
43 53.39 113.37 174.90 112.50 48.33 19.82 7.31 1.83 -0.43
.44 145.77 321.73 232.65 87.07 34.20 13.76 5.32 1.83 0.79
45 925.65 1216.69 191.13 57.86 21.44 8.49 3.42 1.83 2.04
46 443.61 12935.43 115.41 31.20 10.58 3.66 1.62 1.83 3.35
47 -171.40 -1654.64 51.91 10.39 1.28 -0.68 -0.09 1.83 4.78
48 -68.31 -712.92 1.15 -7.25 -6.84 -4.70 -1.76 1.83 6.25
49 -0.09 692.00 -38.54 -21.48 -13.90 -8.27 -3.32 1.83 7.7

• 50 47.63 880.75 -70.04 -33.86 -19.93 -11.60 -4.82 1.83 9.4
51 84.12 7170.58 -91.99 42.33 -24.92 -14.47 -6.17 1.83 11.11
52 107.24 1975.81 -111.11 -51.17 -29.73 -17.15 -7.66 1.83 12.92
53 123.95 8112.47 -124.42 -57.23 -33.06 -19.67 -8.82 1.83 14.73
54 132.00 1557.10-147.05 -63.92 -37.97 -22.17 -10.26 1.83 16.50
55 137.75 1363.57-151.96 -6980 -40.18 -24.09 -11.11 1.84 19.00

* 56 140.48 1465.12 -169.98 -73.99 -43.33 -25.88 -12.37 1.89 20.6
57 190.06 -1307.00 -129.74 -66.07 -39.85 -24.97 -12.15 1.91 22.78
58 137.04 817.50 -210.38 -79.37 -52.29 -29.95 -15.60 2.10 22.71
59 131.95 1930.00-139.89 -64.17 -42.60 -29.71 -13.40 3.00 30.5

'
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estimates.

[ Due to the low resolution used for the sensor in this example, there are situations in which
the estimated displacement contains significant error. Table 4.111 summarizes the results of
several displacements computed by either (4.18) or (4.19). Notice that, in general. the results
obtained from (4.19) are better, although when they are rounded up to an integer number of pixels
(as for example in the last case, Ax =-4, Ay=-l) there can still be an error. This, however, lies
within the quantization error of ± pixel and, if the motion is the same but the sensor resolution
is increased, the results are better (see [171 for a real image 2D translation simulation).

4.3. TRANSLATION, ROTATION, AND SCALLNG

To track 3D motion, the two planes (rectangular and logspiral's computation) will be used
simultaneously. During a processing period, information from each plane will be passed back and

* forth. This is important due to the fact that if a logspiral sensor (image plane) is used, translation
in image plane produces a distorted image in computation plane. On the other hand, rotation
about and translation along the optical axis are dealt with easily using the logspiral sensor (com-
putation plane), but are difficult to deal with in the rectangular (image plane) sensor. Thus, to
accomplish the task, the logspiral sensor's computation plane and the rectangular sensor's image
plane will have to interact. There is useful information in both of them, depending on the type of
motion, that can be used to optimize the process. Notice that rotation and scaling considered here
are both with respect to the optical axis. Thus, no rotation of the image plane on other axes is
allowed.

Let's consider a combination of translation and rotation for the moment. If we can arrange
a group of processors in such a way that each of them is responsible for a different object orienta-
tion, then it may be possible to estimate x and y perturbations plus rotation with respect to the

* optical axis simultaneously. This arrangement is analogous to a model proposed for the visual

Table 4.1I A summary of horizontal and vertical perturbations for a Gaussian image

*5 Displacement Ax = 3.0, Ay = 3.0

Iteration 6a Ay/

1 1.93930 1.99919
2 1.00000 1.00000
3 0.00000 0.00000

3

Ax = )x = 2.93930

. /j=1

. 3

Ay = 2.99919

=1
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Table 4.111 More simulations for a Gaussian image

Displacement Iteration e 1Ay O-U Ay x yj ZAJ - o  Y,-Y

2.55447 1.0000

x = 4.0 2 1.00000 1.00000 1.00000

0X. 00 3.55447 4.0000013 =:. . . - ' - "  ._%y = 1.0 3 0. 30-
0.00000 -

-_. 128 1.99919

x=--4.0
2 1.000030 -3.56421

_y_=_3.0 -0.939303 2.99919 -3.0000 3.00000
i y= 3.0 ____.000 -

3 -0.412527 0.00000

-2.21238 1.99919

x --4. 0
" ". 2 -0.93930 1.0000 -3.56421 2.99919

-3.0000 3.00000

~y=300.0000
_ -0.412527

-2.62900
Ax = -4.0 -4.439969

~ ~-0.439969
A-- Ay =-i.0 2 -0.939303 - -3.56421 .4.00000 0.00000

' ''," -0.412527 -

cortex [181. That is, we will use the tracking windows with different orientations. These win-
dows will be used by each processor which in turn computes the translational parameters. We
then look at the most consistent estimates. In other words, we will use the same procedure as
before except that we now apply the algorithm to various orientations instead of one. The con-
sistent estimates should occur when the reference and the target have the same orientation as well
as when its rows and its columns are perfectly matched. This technique can be extended to case
of translation, rotation, and scaling. All we have to do is, at a given orientation, is to generate

* various tracking windows each with a different scaling factor. Thus, a processor having a tracking
window which best matches the target both in orientation and scaling will give the highest
response. In other words, it gives the most consistent estimates. Other processors will also
respond but their estimates will not be as consistent as the one having the best match tracking
window. This is where a similarity between this technique and the model in [18] appears. Notice
that this is not the same as the conventional correlation. What we intend to do here is to
employ a one-dimensional correlation algorithm and implement it with a parallel architecture.

%
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The following strategy is proposed for the two planes interaction.

I. Logspiral Plane (Computation Plane)

1. Apply the algorithm previously developed to both angle (column) and radius (roI
direction.

a). If the estimates are not consistent within some degree, then some kind of motion must
have occurred. Signal the rectangular plane to start operation.

b). If the estimates are consistent within some degree, then the object experiences only ro-
"ation or scaling or both. Thus. there is no 2D translation involved. No operation is
necessary in the rectangular plane.

c). If the estimates are zero, then nothing has happened. That is, no motion whatsoever has
taken place.

2. Receive a start signal from the rectangular plane. Then, apply the same procedure as
used in step 1.

3. Repeat step 2 until the algorithm converges.

II. Rectangular Plane (Image Plane)

1. Receive a start signal from the logspiral plane. Then, take the following actions:

a). Calculate &i and ty using the same procedure as before using some tracking windows
at a relatively low "resolution" or using the windows at the orientation and scaling
suggested by the computation plane to narrow down the region of operation.

* b). Look at the most consistent estimates which are the best estimates at this point.

c). Update the original reference according to the best i and A;.

d). Remap the reference via logarithmic transformation.

e). Signal the logspiral plane to start the operation.

2. Receive a start signal from the logspiral plane. Then, take the following actions:

a). Generate a finer window "resolution" according to where the most consistent estimate
(step 1) occurs or according to the angle and scaling information from the logspiral

• plane, again, to narrow down the region of operation

b). Calculate Ai and ay using the same procedures as in step 1. but this time use the in-
dows generated in a).

c). Repeat part b through e in step 1.

4 3. Repeat step 2 until the algonthm converges.

% ,
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The abo. e strateg %x ill be used dunng a real image simulaticn. Notice that in step 1, the compu-
tauion plane may or may not give any information about rotation and scaling. This depends on
howk inconsistent the estimates in the computation plane are. We shall pursue this matter in the
simulauon section.

4.3.1. Simulations with a Real Image
The technique proposed above was tested with a real image taken from a CCD camera. The

object is a picture of the deck of a submarine Fig. 4.5. The background is dark with several
lighter wide spots, in various degrees of intensity. The image mounted on a metal plate, is placed
on top of a vertical steel rod, which can be rotated manually, in which angles can be read accu-
ratelv by means of a vernier, to a fraction of a degree. The camera is placed directly above the
object. It is mounted on a steel camera holder which can be moved vertically. The object is
placed at an arbitrary position initially. The image is then taken with a resolution of 512x512.

S"This represents our first frame. The second frame is obtained by first manually moving the object
in the x direction by 0.5 cm and in the y direction by 0.5 cm. The vertical steel rod is then rotated
by 5'. Finally, the camera is moved vertically up 5 cm. The image is then taken. Thus, we have
the second frame which represents the target, whereas the first one is our reference, of course.
Notice that the background is rotated and scaled along with the object for this particular experi-
ment set up.

In order to be able to check whether the algorithm performs satisfactorily, we need to know
to what number of pixels in the x and y directions and to what ae and x, the physical motion
experienced by the object corresponds. This is, in a sense, a "calibration" procedure. In this way,
we can compare the known Ax, Ay, and A@ and K to the results obtained from the algorithm. This
was achieved using standard image processing techniques. The following are all parameters
resulting from those procedures.

Background's location (relative to an image coordinate)

Top left comer (96,153) Top right comer (96,342)

Bottom left comer (327,153) Bottom right comer (327,342)

Object's location (relative to an image coordinate)

Top left comer (142,179) Top right comer (142,305)
Bottom left comer (298,179) Bottom right comer (298,305)

* Background size 9x9 cm = 189a32 pixels
Object size 6x,6 cm = 126x156 pixels

The four actual motion parameters are

u = 0.5 cm = +5 pixels
O . y = 0.5 cm = -4 pixels

-e = 5.0' = +1 V
K = 5.0 cm 0.84 (dimension reduced)

Before applying the algorithm, we will set the tracking window to the size of the object plus 10%
on each side. The tracking window will be used exclusively in the rectangular plane. The

* logspiral's computation plane used consists of arcs of rings configuration with 60 rings, 64

.q.
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elements per ring, and an exponential spacing constant of 1.04. We are now ready to apply the
N algorithm for estimating the perturbations.

First, we apply the algorithm in the computation plane. The results show in the first column
of row and column estimates Table 4.IV. As can be seen, the estimates in both columns are not
consistent to within some preset threshold. However, they are telling us that the object has

360
become smaller. Furthermore, it rotates by about 120 (2.14x-). The rectangular plane uses this

64
information by setting its windows conservatively at 30, 60, 90, 120, and 15' for rotation and .75,
.80, .85, .90, .95 for the scaling factor. One could have narrowed the operating area a little more
if desired. The results for the first iteration are shown in Table V(a,b), whereas, their correspond-
ing histograms are illustrated in Fig. 4.6(a,b). From the table, the horizontal and vertical perturba-
tions are 2.67 for Ai and -0.906 for 4y. The second iteration then proceeds from this point using
the exact same method as before. During this iteration, again, the estimates in the computation
plane can be used. Notice that they are getting more consistent and that the angle information is
around 10' now. The rectangular plane uses finer resolution both in orientation and in scaling
(see Table 4.VI(a,b) and Fig. 4.7(a,b)). From the tables, &t and Ay equal to 1.83 and -1.94, respec-
tively. During the third and fourth iterations, the estimates are more or less the same (see column
3 and 4 for both row and column estimates, in Table 4.IV). The rectangular plane also processes
for two more iterations before it converges. Table 4.VII summarizes the estimates in the rec-

* tangular plane. The overall estimates for horizontal and vertical perturbations are 4.565 for &i and
-3.834 for &y. The rotation and scaling parameters from both planes (they agree to within a small
percent error) are approximately 100 and 0.83, respectively.

The results are very satisfactory although they are not exact as predicted. Actually, we do
not know exactly what the true perturbations are due to inevitable errors in the translation
and scaling displacements, specially. Furthermore, in most tracking applications, the estimates
do not need to be exact but they must be accurate to within some percents. These arguments also
apply to the iteration processes. That is, the rectangular plane does not have to use its windows
from 30 to 150 for rotation and .75 to .95 for the scaling factor. Instead, it could have used finer
resolution in the first place. This, of course, depends on how useful the information from the
computation is. If the estimates are too inconsistent, the computation plane is better not to tell
anything and vice versa. The degree of inconsistency of the estimates in turn depends on how
large the motion is. If it is not too large as in this case, then estimates are not quite inconsistent
as they ought to be. For a fast sampler, this could well be the case. Notice that the degree of
inconsistency of the estimates can be observed from Table 4.IV. As can be seen, as the 2D trans-
lation is getting smaller (by updating the reference), the more consistent the estimates will be.

4.4. Speed Comparison
In this section, we compare the speed of one-dimensional correlation and conventional

correlation. Although speed comparison with other algorithms will not be made, the analysis may
be conducted in a way similar to the one used here. Parallel processing for both algorithms will
not be considered. We will use a serial processor for both of them.

4.4.1. Conventional Correlation
As is well known, direct correlation can be used to find target perturbations. This technique

requires a tremendous amount of processing time. An advantage of the technique is that a solu-
tion is guarantee as long as we are willing to wait. For a large image size (,_i2s), the correlation is
carried out in the frequency domain rather than in the spatial domain. The images that need to be
correlated are transformed to the frequency domain using the Fast Fourier Transform (FFT). The
matrix (complex number) multiplication is then performed on the resultant images. The

S ,



37

Table 4.IV A Real Image with Ax=5.0, Ay=-4.0, .0=11.0*, K=. 8 4

Computation Plane Extimates

-4

Row (K) Columa (A)

1 2 3 4 1 2 3 4

-3.0 -4.0 -4.0 -4.0
-3.0 -4.0 -5.0 -5.0
-3.0 -4.0 -4.0 -4.0

= -3.0 -4.0 -5.0 -5.0
-3.0 -4.0 -4.0 -4.0
-5.0 -4.0 -5.0 -5.0
-6.0 -5.0 -5.0 -5.0
-6.0 -6.0 -5.0 -5.0
-6.0 -6.0 -5.0 -5.0

4. -6.0 -6.0 -6.0 -5.0
-5.0 -5.0 -5.0 -5.0
-5.0 -5.0 -5.0 -4.0 - - -
-4.3 -6.0 -5.0 -5.0 3.0 2.0 2.0 2.5
-7.0 -5.0 -5.0 -4.0 3.0 2.0 2.0 2.0
-7.0 -5.0 -6.0 -5.0 1.5 1.5 2.0 2.0
-7.0 -6.0 -4.0 -5.0 1.5 1.5 1.5 1.0
-2.33 -2.0 -3.5 -3.5 2.0 2.0 2.0 2.0

-10.0 -4.0 -9.0 -8.0 2.33 2.0 3.5 3.5
-10.0 -5.0 -8.0 -7.0 1.75 1.5 1.75 1.75
-4.0 -6.0 -8.0 -8.0 1.- 2.0 1.75 1.75
-4.0 -6.0 -6.0 -7.0 2.25 1.75 1.75 1.75
-4.0 -6.0 -5.0 -4.0 1.75 7.0 2.0 2.0
-4.0 -9.0 -5.0 -5.0 3.0 - - -
-4.0 -9.0 -4.0 -5.0 - - - -

-4.0 -9.0 -5.0 -5.0 - - - -
-4.0 -6.0 -5.0 -5.0 - - - -
-3.0 -6.0 -5.0 -5.0 - - - -
-3.0 -4.0 -5.0 -5.0 - - - -
-3.0 -4.0 -5.0 -5.0 - -
-3.0 -4.0 -5.0 -4.0 - -
-3.0 -4.0 -4.0 -5.0 -

x-- K- -5.05 - A0ft2.025

I'
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*Table 4 Via) First I erau on Ax =5 CA=-4 ().A9=11 o 84

Scaling Factor (row estimates)

49Angle 75 .80 .85 .90 .95

3." -2.56 (7) 4.89 (15) 4.64 (15) 6.58 (117) 8.88 (6)
6.00 5.19(10) 2.51 (20) 5.26 (19) 7.41 (20) 9.13 (10)

*9.00 0.042(17) 2.67(43) 5.42 (3 1) 8.18 (28) 3.52 (8)
12.00 -2.0(14) 5.03 (25) 4.51 (27) 8.40(17) 9.81 (6)
15.00 -2.70 (11) 4.95 (16) 5.81 (16) 8.59(12) 8.83 (9)

Table 4.V(b) First Iteration Axz =5.0,Av =-4.0,AO-- 1.0-1K-.84

I* Scaling Factor (column estimates)

Angle .75 .80 .85 .90 95

*3.00 2.18 (12) -9.48 (9) -7.71 () -1.26 (9) -3.73 (6)
6.00 1.67(11) -4.25 (13) -7.89(11) -8.76 (7) -8.98 (5)
9.00 -.79 (16) -.906 (29) -6.30 (22) -5.90 (10) -9.39 (7)

12.00 -2.47 (14) -3.21 (18) -2.39 (15) -2.93 (10) 4.33 (8)
15.00 -6.15 (10) -2.740(2) -3.06(1 0) -3.16 (7) -2.04 (7)

%
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Table 4.VI(a) Second Iteration Au =5.O.Av =-4.O,Ao= I 1.O,,,=,84

Scaling Factor (row estimates)

Angle .79 .81 .82 .83 .84

18.50 7.09 (6) 4.79 (23) 4.41 (43) 1.92 (54) 1.70 (76)
9.50 -7.18 (4) 6.27 (30) 3.0 (64) 1.97 (106) 1.34 (93)
10.00 3.970(0) 5.78 (32) 2.90 (73) 1.83 (191) 1.33 (104)

1.- 1.78 (11) 3.77 (28) 2.53 (67) 2.17 (89) 0.58 (73)
1.0 4.08(11) 5.17 (35) -6.42 (22) 1.76 (61) 2.94 (22)

Table 4. VI(b) Second Iteration Ax =5.O,Ay =-4.0,A)=1 I 100~--84

Scaling Factor (column estimates)

Angle .79 .81 .82 .83 .84

8.50 -3.30 (16) -1.380(8) -2.70 (26) -2.21 (28) -1.01 (32)
9.50 -6.33 (25) -3.78 (28) -3.44 (36) -2.36 (43) -.103 (30)

10.00 -6.40 (20) -3.72 (39) -3.09(40) -1.94 (62) -2.19 (39)
10.50 -6.44 (21) -3.95 (34) -3.55 (36) -2.62 (43) -2.15 (37)
11.00 -6.96 (16) -4.23 (27) -7.30 (16) -2.93 (34) -6.12(13)

%
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Table 4.VII A summary of estimates in the rectangular plane of a real image

Rectangle Plane Estimates4

No. of Iteration row (W) column (A)

1 2.67 -0.906
2 1.83 -1.94
3 0.065 -0.78
4 - -0.208

4
E AiJ 4.565 £AIj -3.834

- J = i-I

I

I1

I'

0
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maximum frequency spectrum must be then located in order to compute the perturbations. The

following is a number of operations required to compute the correlation.

I. Number of operations for FFT = 2 oy

2. Number of operations for complex matrix multiplication:

Number of additions = k,,-1)
Number of multiplications =n

4.4.2 One-Dimensional Correlation

The basic algorithm for the one-dimensional algorithm is indicated in (12). If there is no row
search performed, then for one line we have

Number of multiplications = 3n
Number of additions = 4(,,-1)+ I

Number of division = i

Thus, for lines, we have

Number of multiplications = ,(3n)
Number of additions = 4P(n-1 +n
Number of divisions =,

* For 2D motion, the total number of operations are

Number of multiplications = 2n (3m) = 6
Numberof additions = 2x(4n(n-1)+i,) =8n(m-l)+2

Number of divisions =.n + = 2m

Example. Let equal to 256. For direct correlation, we have

FFT computation = 2n iog2n 096

Matrix multiplications:

Number of additions = 12(n-)= 16.711,680

Number of multiplications = = 16,777,216

For one-dimensional correlation, we have

Number of multiplications = 6n' = 393,216

Number of additions = S'(n- )+2Au 522,752
Number of divisions = 2, = 512

- .. The percentage of number of operations used is
393216

Multiplications = - x100 = 2.344%
16777216

522752
O Additions = - xlOO = 3.128%

16711680

As can be seen, we save over 95% with the one-dimensional correlation. This does not count com-
putation time for FFT since the number of operations required for the FFT computation can be
used to offset the number of divisions. Furthermore, complex matrix multiplication usually takes

@ more computation time than a normal one.

% %
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The above analysis applies to binary images since all rows have the same intensity function.
Furthermore, it also applies to the case of one-dimensional motion regardless of the image type.
Thus, no row search is required for both cases. For a grey level image, row search is necessary

[ since a different row has a different intensity function. Column search, however, is not neces-
sary. The reason for this is that once the position where most consistent estimates in row direction
occur, have been located, a column displacement can be obtained. This is true because a row
mismatch causes by a vertical shift or column displacement. One may apply the one-dimensional
correlation in the column direction in order to confirm the vertical displacement as we did to al
of the simulations.

Let's include a row search in the analysis above. Let's say that we will search ±1o% of an
object dimension. Notice that the second term in (12) only needs to be computed one time. There-
fore, for n lines we have

Number of multiplications = P12 (2..) + 3n)
Number of additions = n[3(Pt-1X.2n ) +4(n-1)+(.2 n+!)]

• Number of divisions = , (.2n + 1)

For n equals to 256, we have

Number of multiplications = 6,907,494.40

Number of additions = 10,301,491.2
f Number of divisions = 13,363.2

The percentage of number of operations used is

6907494.40
Multiplications - - X10o = 41.17%

16777216
10301491.2

Additions - 1 . x100 = 61.64%
16711680

Again, the number of divisions are used to offset with the number of operations for the FFT and
the additional time required for the complex number multiplication and addition. As can be seen,
we do not save as much as when we compute the perturbations without a row search. However,
we still save 40% or more of the computation time. The point that we would like to make here is
that as the motion gets more complicated, the processing time increases tremendously. Thus, the
parallel processors are necessary in order to achieve a real-time processing for 3D motion. A sin-
gle processor will not be able to accomplish the task. Although it is true that the conventional
correlation algorithm as well as other algorithms can be implemented in highly parallel fashion,
most of them are too complex. Thus, it is very difficult to design in such manner. However, the

*one-dimensional correlation has the property of simplicity and separability. That is, its
mathematic formula is simple. Each row of a moving area can be computed independently. Thus,
it is easy to design and implement the one-dimensional correlation algorithm in highly parallel
fashion (see [171 for harware implementation of the algorithm).

4.5. ConclusionI-
A row (column)-correlation-algorithm for motion prediction,easily implementable by paral-

lel architecture, has been developed. If implemented by means of a general purpose digital com-
puter, time consuming process is expected. However, it is still faster than conventional correla-
tion technique. The algorithm also combines many good features of various algorithms presented
in the literature. For example, it has correlation feature of [19] and spatio-temporal technique of
[15,161. In addition, the algorithm also possesses a good noise immunity property. The computa-
tion of gradients around edges or comers does not affect the accuracy of the estimates. The
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convergence rate appears to be fairly quick for a large motion. The combination of the algonthm
and the BVS sensor with two planes configurations has solved the SD motion problem. The
results from the real image simulation are encouraging.
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5. PATTERN RECOGNITION USING THE BVS, THE C-TRANSFORM AND
A NEUTRAL NETWORK CLASSFIER

4q 5.1. Introduction

A major problem in pattern recognition is object recognition when position and
orientation vary in the image field. Typically, the problem is solved by template match-

.. ing, The template is compared to the image (usually by taking some sort of correlation),
and it is then shifted to another location and again compared. This process is repeated
until all possible locations are covered. If more than one object is sought, then more
templates must be used. The case with the highest correlation is then selected as the
recognized object. This process, while fairly accurate, is very time consuming even
when small image arrays are used.

In the biological visual system (BVS) a complex logarithmic conformal mapping
takes place between the retina and parts of the cortex (specifically area 17). The out-
standing feature of the BVS sensor is form invariance under magnification and rotation in
computation plane. The use of a translation invariant transform in computation plane
would shift the object to a standard location regardless of the rotational orientation or

-" size of the object in image plane. This would allow faster pattern recognition of objects
which is not dependent on rotations and magnifications.

A class of translation invariant transforms, the C - transforms, possesses the
desired characteristics plus other features which make this class useful. The functions

. involved are very simple, and the transforms themselves exhibit a high degree of paral-
lelism. This transform can be performed using a highly parallel artificial neural system
(ANS) for greater speed and reliability.

This class of transforms uses identical functional layers of simple operations that
can be done very quickly without computationally intensive multiplications and divi-
sions. Using this parallel structure, the transforms provide a method of transforming any
shifted image to a standard form, that can be used with a template matching scheme for
pattern recognition. The major advantages of such a system are its simplicity, highly
parallel nature, fast operation, and the computational gain derived from the reduced
complexity of the template matching.

- :-. 5.2 Background

The C-transform class is a class of nonlinear translation invariant transforms that
can be implemented with simple parallel networks of computational elements. Reitboeck
and Brody (1969)[1] developed the R-transform, the first known member of this class.
The R-transform could be implemented using simple functions (sum and absolute differ-
ence) in a parallel arrangement similar to that of the Fast Fourier Transform (Fig. 5. 1).

The transform can be used on vectors of length 2' where n in an integer. The actual
, .calculation of the transform can be expressed as:

Symmetric Functions fI and f 2 over sequence:
a(l) I-0 1...2 - 1

The K" component of the transform:

I.o

0-'-,
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. ~A(K) iK=O,1,...,2 4 -1I2

*I let the n-bit binary expansion of K be k0.k:.. .,_..

find sequences yo(I),y, (1) .y(!) by:

Yo(l) = a () (31

and

4 -+1(1) :f,(y,(1),y,(l+42 )) (4)

-., where

f,=f I if k,=0 (5)

or

f,=f 2 if k,=1 (6

The K" component of the transform is then:

A (K)=y, (K) (7)

'
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This is the formulation of the transform for the one dimensional case. The exten-
sion into two dimensions provides a similarly simple representation of the transform:

Let A (1,i); Ij =0,1 ..,,2 -1 be an array.

- .Construct matrices Y0 ,Y1 .... YM such that:

Y (1,j) -A(IJ); iJ=,1,...2'-I (8)

Let
'~ ' r-(1.1) =P (9)

YP-(1+2 -I.J)=Q (10)

Y (I/+2"-1) =R (11)

Y r- (1+2 1 +2 S=s (12)

Then form matrices by:

Y (2J21J)= f (f I(P,Q),f (R S)) (13)

. Y (21211)= f 2 (f I(PQ)f I(R ,S)) (14)

...... Y" (21+1,2j) =f, 1/ V (P ,Q )f'z(R S,)) (15)

Y (21 1,2J +1) =f 2 (f 2(P Q )If 2(R -S)) (16)

for 1 1=0,1....,2 -1

The Two-D transform is then:

(1I0.-(17)

Wagh and Kanetkar (1975)[31 examined the transform in more detail and developed
a form called the Generalized R-transform. They also made an extension of the two

0 dimensional R-transform into arrays that were rectangular, not only the square arrays of
Reitboeck and Brody.

Wagh and Kanetkar (1977)(21 generalized this translation invariant transform from

the R-transform's sum and absolute difference functions to any set of two functions that
are argument symmetric. They make a convincing case for the use of the M-transform on

* the grounds that at higher order it has greater accuracy (more possible classes) than the
R-transform. The M-transform also provides binary outputs for binary inputs, which
leads to a smaller transform volume (and therefore less memory used) as compared to the
R-transform which does not provide binary outputs. They also claim that the functions
"",ed in the M-transform (logical OR and AND) are faster to implement than the
..,rresponding R-transform functions. The binary nature of the M-transform makes it0,

W. 0 r.*..P., r e W l
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, more attractive for ANS implementation.

Burkhardt _nd MUller (1980)[41 did a much more in depth mathematical examina-
tion of the properties of this class of transforms. They included the R and M transforms
as well as two others in their analysis of the translation invariant mapping properties of
the transform class.

Reitboeck and Altmann (1984)[5] discuss the use of the R-transform in a detailed
*i model of magnification and rotation invariance in the BVS. They compare the R-

transform to other methods (Mellin and Fourier-Mellin transforms) as they could possi-
4P q bly exist in the BVS. Their model covers the log-polar mapping of information, the

DOG smoothing function that is similar to the receptive field weighting in the retina, and
various processing (thresholding and edge detection) that is useful in obtaining reason-
able results. They also suggest that these transforms can be implemented using an ANS.
They go to a great length to justify the use of these transformations in pattern recognition
in their detailed BVS model.

*5.3. R and M Transform Advantages and Disadvantages
The R and M transforms exhibit a number of advantages and disadvantages that are

relevant to pattern recognition problems. These will also influence choices that are made
concerning implementation.

An advantage demonstrated by the R-transform, as mentioned earlier, is that it can
work on continuous as well as binary information. This would allow grey level process-
ing of images under certain circumstances. Another advantage is that the functions
involved, sum and absolute difference are accomplished rather quickly in computer
implementations.

The R-transform also has a number of disadvantages, one of the most notable being
that the transform volume grows very quickly. This means that the numbers in the
transformed vector or matrix are typically much larger than the values in the input vector

* or array. This makes it necessary to use more computer storage space to perform this
transform. Another aspect of this problem is that this characteristic leads to non-binary

Soutputs for binary inputs. This could lead to difficulties in pattern recognition schemes.
*: In higher order problems, the R-transform has fewer distinct classes of transforms than

the M-transform. This means that the accuracy of transformation is lower for the R-
transform when the problem's order is high.

The M-transform has several advantages when compared to the R-transform. The
transform volume of the M-transform is much more limited than the R-transform and is
on the same order as the input volume. The functions involved, logical AND and OR,
are usually among the fastest implemented on the computer, and are probably faster than
the corresponding R-transform functions. The M-transform provides binary outputs for
binary inputs, so there is no compatibility problems with other parts of a pattern recogni-
tion system. In low order problems, the M-transform has fewer distinct output classes

l -than the R-transform, but as the input order increases this changes so that the M-
transform is more accurate.

The major disadvantages of the M-transform include the necessity for binary input
, information. The M-transform cannot use continuous data. Another disadvantage is due

to the functions, OR and AND, which are sometimes difficult to implement using some

I.

I,
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higher level programming languages.

5.4. Computer Simulation Results
Initial testing was done on the R and M-transforms by generating a large number of

8 dimensional binary vectors. This vector set was used to test the properties of the
transforms. This was done primarily to determine if the theory was correct in all of its
claims.

The R and M-transforms were both tested with these vectors and shifted vectors,
including cyclic shifts, producing the same transformed pattern, as expected. Advan-
tages and disadvantages of both transforms, mentioned earlier, were also confirmed.
Further testing was performed on 8 dimensional binary vectors, this time on a set of all

-v,- 256 possible 8 dimensional vectors. The major reasons for this experimentation was to
determine transform volume and the number and types of classes present in the output of
the R and M-transforms.

The R-transform was performed on this set of 256 vectors and the results in terms of
translational invariance were unchanged. The maximum input vector volume was 8 (for
the all ls case) and the maximum output transform volume was 20. The output was not

* binary just as in the preliminary testing. The number of distinct classes found was 21, so
the R-transform divides the 256 8 dimensional binary vectors into 21 classes.

The M-transforms of this vector set again demonstrated the invariance to transla-
tions as shown by the previous inquiry. The maximum input vector volume was 8 and
the maximum output vector volume was also 8. The output was binary, and the
transformed vector is identical to the input vector (shifted to a standard location). The
transform yields 20 distinct classes of outputs for the 256 binary vector inputs.

In comparison, the time performance is very similar for the transforms, both of
which are very fast. The transform volume is much greater for the R-transform, and this
problem will continue to worsen as the order of the problem increases. The R-transform
provides an output that is continuous while the M-transform's output is binary. The R-
transform does not resemble, even superficially, the input, while the M-transform is
identical (but often shifted) to the input. The number of distinct classes at this low order
is slightly greater for the R-transform, but as the order increases this will reverse and the
M-transform will become more accurate.

* 5.5. Simulation of 2 Dimensional Case"
The next stage of simulation was done to test the 2 dimensional R and M-

transforms. 8x8 binary arrays were used as inputs to the 2 dimensional transforms. The
images tested were binary 4x4 squares in the 8x8 array. The square was shifted to 25 dif-
ferent locations in the 8x8 array to determine the translational invariance of the
transforms.

The R and M-transforms gave the same output for all 25 4x4 squares, which
verifies the invariance to translations of these transforms. The volume of the R-transform
was quite large compared to the input volume. The M-transform volume was the same as
the input volume, and much smaller than the R-transform volume.

The R and M-transform performance was examined for higher order 2 dimensional
arrays. The purpose was to determine the characteristics of the transforms, specifically to

Al
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verify properties and to test the sensitivity of the process. Three classes of objects were
considered, lines, squares, and circles. The images contained one of the three at some
location in the image field. The sensitivity of the transforms was tested by varying the
width of the lines and object sizes slightly and examining the differences in the resulting
transforms. As before, the images were binary, and the array size was 64x64. This size
was chosen because it meets the 2" requirement and is easily done using the BVS sensor.

The R-transform of the higher order arrays again demonstrated the shift invariant
. nature of the transform. The continuous output had a volume much greater than either

the input volume or the lower order simulations. The output arrays had some sensitivity
to line width and object size, i. e. slight variations gave slightly different transforms.
This variation in the transform increases in proportion with the variation in the image.
This sensitivity, while bothersome, is certainly within limits of adjustment for pattern
recognition. The actual recognition algorithms must be adjusted to tolerate some vara-
tions.

Tests using the M-transform provided similar verification of the translational invari-
ance properties. The output in this case was binary, and the volume was of the same
order as the input volume. The M-transform, like the R-transform, showed some sensi-
tivity to line thickness and slight variations of size, but as before, these could be com-

4 "pensated for in the recognition algorithms. The output, unlike the R-transform output,
looks like the object in the input array.

There are several problems with using arrays of this size, primarily due to memory
space usage. While binary images take up much less space than grey level images, the
size of these (64x64 or larger) prevents comparison of more than a small number at once.
This immediately eliminates certain types of pattern recognition schemes. Another prob-
lem is that even after the scene has been "standardized" by the transform, it still poses a
pattern recognition problem of fairly high order, so even though the processing is drasti-
cally simplified it is still fairly extensive.

, g5.6. Use of Transforms With BVS Sensor
The R and M transforms must be used on square or rectangular arrays so the only

compatible computational plane is the arc of ring arrangement. This gives a rectilinear
computational plane that can be adjusted to the proper square 2" array size.

An advantage of the transforms with the BVS sensor, as mentioned earlier, is that
*l under the LSM scalings and rotations become translations, so these transforms can be

used to standardize all magnifications and rotations to a single image for template match-
ing.

The choice of the C-transforms, specifically the M-transform, for ANS implemen-
tation is motivated by a number of reasons. The primary reasons, as mentioned above,

4 are the simplicity of function and parallelism. The transforms can be performed by
identical layers of simple elements. Another aspect which reinforces the suggestion of
ANS implementation is that the transforms have a known input/output relationship, so
performance can be evaluated easily. The M-transform uses only binary information for
the vector or image representation, so the high gain sigmoid transfer function used in

4l , many ANS will provide a binary output. And finally, the simulations can be developed
in fairly low order and can then be easily generalized to two dimensions or to higher

I.4
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order problems. These traits of the M-transform make it a reasonable candidate for ANS
implementation.

5.7. Network Structure and Weight Matrix

An ANS implementation of the M-transform utilizes the processing elements (PEs)
as threshold logic gates to perform the functions of AND and OR. This means that a
high gain is necessary to make them behave properly. The connection weights can be
determined quite easily for the vector case, since each PE has two inputs.

In the AND case, the PE should go to one if and only if both inputs are one, so the
inputs should be weighted such that their weighted sum is greater than 0.5, but their indi-
vidual weights are less than 0.5. A selection of 0.4 for the AND PE case should provide

*.-.this function. In the OR PE case, the output should be one if any input is one, so the
weights should be chosen such that any input of one will give an element input of more
than 0.5. The choice was 0.6 for the OR PE weightings, which made it possible for the
weighted sum of the inputs to be greater than one. This made choice of the transfer func-
tion harder.

The form of the network can be seen as Fig. 5.2.
As shown, the network is not symmetric, as is the case in a Hopfield network. But

- .in this case there is no feedback, so stability is assured. Finite inputs yield finite outputs.
The binary nature of the solution can be demonstrated as:

Inputs :i1 1 so (8

Element inputs • S wq 1.2 (19)

Element outputs • = 1 (20)

Element inputs X, = ,' 2 < (21

Final outputs rn = < 1 (22)

In the demonstration above, I 1 means that the element outputs that should be one
are very close to one due to their input values and the sigmoid transfer function. The
transfer function must have the property of mapping values of input that are greater than
I to an output of 1 (or very nearly 1 ), as wvell as the normal sigmoid characteristic about
0.5. This is accomplished by limiting the input side of the PEs to only small values

0, greater than I (in this case 1.2) and to use only even powers of gain. The transfer func-
tion actuallv used is:

.... tj i . 23
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Figure 5.2. Network Structure

Where v(ij) is the output of element ] on slab 1, x(lj) is the input to element j on
slab I and p is the gain of the function. The evenness requirement is to prevent the out-
put from becoming greater than 1. In order to make the network behave properly a
number of other functions must also be specified. The I-functions relate the scaling of

*I the incoming signals by the proper weights, and the F-function determines how the I-
functions are combined. There are two I-functions, one corresponding to the external
inputs to the elements (slab 0 to slab 1 connections), and the other corresponding to

• -feedback to the elements (slab I to slab 1 connections). The functions used are shown
below:

41 1(1,0) = V(o,)w(l,,0O,i) (24)

,(1.1) = V(1i )w(I ,j ..' ) (25)

and
"'.F(I) 1 (1,0) + I(I.J) (26)

I%
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With the network structure and weight matrix described above, the M-transform
was performed on 4 dimensional binary vectors. We would expect to see the transla-
tional invariance of the transform, as well as very fast operation of the parallel arrange-
ment. The epsilon step size can be 1 since the output is essentially a function of the input
directly and not of the past as in the TSP. For all 4 dimensional inputs the results are
summarized in the following table (Fig 5.3.):

This table clearly shows the translational invariance of the M-transform. In the case
of a translated vector (for example 0001 and 0100) the output is the same as the non-
translated case (both are 0001). This just as we expected from the previous discussion.
The transform is also very fast, depending upon the choice of epsilon. The limit (epsilon
of 1) is convergence in two steps due to the two layer parallelism of the transform.

The transform can also be expressed in a compressed form and extended into two
dimensions.

5.8. Reduced Transform Representation

It is desired to develop a reduced representation for this transform so that it may be
determined whether any computational savings can be obtained through another expres-
sion of the transform. This would involve using the PEs as more than just two input

M-transform Results : 4 Inputs
Input Output
0000 0000
001 0001
0010 0001
0011 0011
0100 0001
0101 0101
0110 0011
0111 0111
1000 0001
1001 0011
"010 0101

. 1011 0111
1100 0011
1101 0111
1110 0111

Figure 5.3. 4 Dimensional Vector M-transform Results.
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threshold logic gates. It seems possible that a compressed M-transform representation
may use fewer elements or fewer layers than the normal arrangement.

The nature of the transform is examined and the equations for the outputs are deter-
mined in terms of the inputs. In the 4 input case, this procedure can be summarized as:

Inputs : 1 , I 3' 14  (27)

Outputs : Ml1, M 2, M 3, M 4  (28)

*M = Il + 1 3 + 1 + 14 (29)

n 2 = (11 + )(t2 + 14) (30)

M 3 = Il3 + 1214 (32)

0 lM4 = 113114 (33)

Where the "add" and "multiply" operations are logical OR and AND.
The above equations demonstrate that two of the functions, MA and Ml, can indeed

be compressed because they consist of only one type of function. The other two, M 2 and
M3. cannot be done using a single element. Each of these is a comparison of two binary
quantities that are in turn comparisons of two binary quantities. This means that since an
element is needed for each comparison, 3 elements are necessary for each of M 2 and m3.

This total of 8 elements is the same as in the noncompressed case, so no computa-
*tional advantage can be gained in the number of elements used. Furthermore, M 2 and M 3

are two layers deep, so there will be no time improvement either. Actually, the original
case is superior because all of the elements reach the proper outputs at the same time,
since they all have the same depth (number of levels).

This means that while expectations were for a more efficient use of network struc-
* ture, the best arrangement proved to be the original parallel layers of identical structure.

5.9. Extension into Two Dimensions

The transform extension into 2 spatial dimensions can be accomplished in the
manner described by equations 8-17. The transform flow in the 2 dimensional case con-
sists of layers of arrays of elements, with each layer having the identical functional
arrangement.

Unfortunately, the functions present in the 2 dimensional case are actually combi-
nations of the simple functions of the 1 dimensional case (see equations 13-16). This
leads to problems like those faced when a reduced transform representation was sought,
i.e. it takes 3 PEs to make up one functional "element". This problem is not actually asbad as it first seems because the initial functions have quite a bit of overlap. This means

that the output of the first PEs in a functional element is needed by 2 functional elements.
This allows implementation of the 2 dimensional M-transform using only twice as many
PEs as functional elements.

I2
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Given this requirement, the 4x4 2 dimensional M-transform can be performed
using 64 PEs as 2 input threshold logic gates. The binary input signal enters from slab 0
and proceeds through two functional layers of 32 PEs each, which is actually four logical
layers of 16 PEs each. This doubles the time to convergence for the M-transform.

The sane functions, the g, I, and F-functions, are used in the 2 dimensional case
S-" as were used in the vector case. The weight matrix has been expanded and changed to

reflect the 4 logical layers of the 2 dimensional transform. As in the previous implemen-
tation, the matrix is not symmetric, except in the sense that the two layers have sym-
metric functionality. Again there is no direct feedback, so stability is assured.

We would expect to see a transform that takes twice as long as the previous case,
and provides the necessary invariance to translations. The results obtained do indeed
demonstrate these two features, and the translational invariance is demonstrated in Fig,
5.4.

A number of other input arrays were used, and the results always showed the trans-
lational invariance property.

5.10. Implementation of Learning in an ANS
Neural networks in living creatures are often capable of learning quite a variety of'

things, which gives these networks a major advantage over conventional networks in a
number of applications. Learning in a neural network is accomplished by the
modification of the interconnection weights between the elements. An ANS that has the
ability to learn must also include some provision for the modification of its connection
weights. In a hardware device this may be difficult if not impossible from a practical6standpoint, but it is easily accomplished in simulation.

The general form of the weight modification rule employed in ANS learning is:

w I(t+l) = w (t) + Aw (0

Where w, is the connection weight from unit i to unit j. This modification can be
accomplished by three mechanisms used in determining Aw. They are broken into three
groups according to the amount of supervision used in each.

The first type of learning rule is unsupervised, in which the network learns correla-
tions, i.e. if element i on is likely to drive element j on the connection gets stronger.
This rule can be summarized by the following equation:

AwJ = kf (X ,W)g(xw, )

In this rule, k, is the learning parameter, which determines how much the connec-
* tion weight is changed. This may be a constant or may vary over time. Aw is also a

function of the current state of the j and the particular input and weight of the i ele-
ment. Unsupervised learning is useful when the exact desired output is unknown, or
there are many elements that cannot be directly specified.

The second type of learning is called weakly supervised and uses a single error sig-
* nal to tell the network to learn or not to learn. This is like telling the network if it is

wrong, but not telling it where it is wrong. This rule follows an equation like:

\.
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Where k, is the learning parameter, as before. However, now Aw is a function of the
error signal I and its weight w,, as well as a function of the particular input and its
weight. This type of learning is useful when 'he desired output is known, but for some
reason the elements cannot all be directly specified (hidden elements) or a full error vec-

,- .: tor is unknown (order of the system is too large, etc.).

The third type of learning is highly supervised, in which the weight modifications
are adjusted according to the amount of error, i.e. the weights are changed in proportion
to their contribution to the error for that element. The general form of this rule is:

Awq= k.f (IT.V J )g(x ,w,)

Once again, k, is the learning coefficient, but now Aw is a function of a training
vector IT and the output vector v, so that an error value is generated for each element.
This differs from the previous weakly supervised case in which an overall error signal
was generated. As before, Aw is some function of the individual weight and input for
that element. This type of learning is used when the outputs of each element are known

* so that the error vector can be generated.

Since the M-transform can be calculated easily by a separate program, all of the
0• outputs can be determined for the generation of the error vector. This allows the use of

highly supervised learning to teach a simple network the M-transform. The _w function
that was used is:

.w,, = k (t"  - ,)

Where t, and V, are the desired and actual outputs of element i and l is the i, input
to element j. The difference corresponds to the j component of the error vector, and
the i, term determines the amount of contribution to the output for that particular weight.
Using this function the network can be taught the M-transform.

The network structure used is the same as in the four dimensional vector case, as
shown previously, with four inputs to eight elements. The I and F-functions are the
same as before, and the g-function has been changed to the hyperbolic tangent function
used by Hopfield. This function has been shifted and scaled appropriately so that 0 and 1
are the bounds as in our previous case. The new g-function was chosen because the old
power function does not asymptotically approach I and 0. This means that if the input
value becomes greater than 1, the output will become less than 1, so that the weight
update rule will push the weight in the wrong direction. The hyperbolic tangent function
doesn't have this problem.

The connection weights were initially all zero, as were the initial conditions. The
network is presented with an input vector and allowed to reach a final state (two cycles).
This is necessary so that the error vector is generated at the proper time. Once the final
state is reached, the error vector is calculated from the training input and the element
outputs. The weights are then updated according to the error vector, learning coefficient,
and individual input. Then the initial condition is reset and the next input vector is
presented and the process is repeated.

........ . . .. ....
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Since there are sixteen possible four dimensional input vectors, the cycle must be
repeated a number of times to reach a working network. There are also a number of sta-
bilitv issues associated with the learning that influenced the final procedure. The gain of

*, the sigmoid plays a significant part in the learning process. If the gain is too high, i.e. the
. sigmiod is too steep, all of the error components are either 0 or 1, and the system just

goes from state to state never reaching the desired result. This forces a flatter sigmoid.
Another factor in the stability is forcing the diagonal elements to remain zero throughout
the simulation. This helps to maintain stability by removing direct feedback.

In addition to stability issues, there are several things that must be addressed to
make the system behave properly. The first of these is the noise margin of the system,
i.e. what values constitute zero and one. In this case, a noise margin of 0.15 was chosen

*1 so that values of .85 and above are 1 and .15 and below are 0. This seems to be a reason-
able choice, and if the output was within this margin no learning takes place. Another
important issue is the value of the learning parameter. A number of values, constant and
variable, can be used, and several were examined to determine their effects on the learn-
ing algorithm.

U- The simulation was performed on the training set which consisted of the sixteen
input vectors, each appended with an additional eight values representing the desired out-
puts of the blements. This was done for both constant and variable learning parameters.
The constants used were 1.0, 0.5, 0.25, and 0.1. We would expect the lowering of the
parameter to provide smoother paths in learning space, and for the system to take more
iterations of the test set. The results obtained do indeed demonstrate this.

For the case of a unity learning parameter, the network learned the M-transform in
about 12 iterations through the test set. The changes in the weights are very discontinu-
ous or jumpy. When the parameter was lowered to 0.5, it required 30 iterations of the

p test set, but the weight changes were smoother. When the coefficient was lowered to
0.25. the number of iterations to the desired result jumped to nearly 100. The paths of
the weight modifications were much more continuous. Finally, with a parameter of 0.1
the system took almost 1000 times through the test set to reach proper M-transform form,
while the paths became very continuous in appearance.

The second case tested was for a varying learning coefficient. In this case, the
parameter starts at 0.5 and is reduced in 0. 1 increments every 10 cycles through the test
set, stopping at 0. 1. Results showed that this variable parameter provided a working net-
work in around 60 cycles through the test set.

The weight matrix obtained by the learning algorithm is drastically different from
that obtained from an initial design. This seems reasonable considering the nature of the

* learning process. An example of a final state of the weight matrix is shown in Fig. 5.5.
4 'In general, highly supervised learning seems to be an efficient and fairly quick method of
,. teaching a neural-like network simple tasks such as the M-transform.

In general. the ANS approach to the M-transform is a simple, fast, and efficient
method of performing the this translation invariant transform.

Once the images have been "normalized" to a standard location by means of a C-
transform, the recognition problem remains to be solved. The complete system for pat-

- tern recognition is shown, in block diagram form, in Fig. 5.6.

I '
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Input Weight Matfix

1.099 0.799 1.099 0.799 0.000 0.000 0.000 0.000
3.199 -0.699 2.099 4.56e-05 0.000 0.000 0.000 0.000
0.599 1.099 0.799 1.099 0.000 0.000 0.000 0.000

-0.299 1.499 1.81e-05 1.399 0.000 0.000 0.000 0.000

Network Weight Matrix

0.000 8.16e-05 0.200 8.16e-05 0.200 8.16e-05 8.16e-05 8.16e-05
-3.199 0.000 -0.600 -0.699 -3.099 1.499 1.799 -1.499

7.71e-05 7.71e-05 0.000 7.71e-05 7.71e-05 7.71e-05 7.71e-05 7.71e-05
-0.499 -0.399 -0.999 0.000 -0.999 0.999 -1.099 -0.399

0.200 0.100 1.08e-04 1.08e-040.000 0.200 1.08e-04 1.08e-04
2.699 9.99e-02 3.099 -0.799 -1.299 0.000 -2.099 -0.899

*-56.18 92.39 -58.08 95.38 35.30 -147.3 0.000 -3.699
-6.299 8.099 -7.099 8.598 -11.29 -2.999 4.899 0.000

Figure 5.5. Learned Weight Matrix.
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lfotkvie~d and Tank are not adapm, e. in other Aords. the,, lack a learning capability. The
---:nera: ,Ort ot the U&T network for pattern recognhnon t' ho, n Fig 5

Ihe net'wrk ha, N input,, t .. ., ,. % outputs 2 1. .'.1 and an offset A'.
,.en a inal space r A hich is spanned b,, a set of basis functions BLk = 1.2. Jf4, find

"'e '%es dig ital co mhination of basis functions B, which describe a given signal. For the
OKe .: ,rolern of pattern recognition, the signal space i would consist of the two
':rmen\ional arra,, of pi,,els which make up the computation space image. For an 8x8
.,rra,. N=,- Fhe hais functions, in this case. would consist of 64-dimensional vector
, !reentation , ot the stored images. In the case of binary images, this would consist of

:ie, n the Positions where a pixel is excited in the stored image and zeros elsewhere.
f'.an ot ,he proce ng elements represents a basis function or, in our case, a stored

m _trace It. atter reaching a steady state. a processing element has value 1. then this ele-
."er:t ',, he iet match for the input signal. If the input image does not match any of the
:,red :mages. all the prxessing elements will have value zero in the steady state.

In de :gntng the actual net,,ork, it is necessary to determine the value of the con-
• :;,m trengths To this end. an energy function must be constructed which will have a

, "Tn po eho f:nc:on. m ue t,,r the best combinauon of basis functions describing a given signal.
I{ I.','d and Tank h.a,,e proposed the follo% ig general t,,pt of energy function 16).

0

0



E = 172(i - FVkBk) + 12Y(Bk!k)(V*)(G - V0

The first term is minimum when a combination of basis functions matches the input
signal; the second term is minimum when the processing elements have values of zero or
one. In terms of amplifier outputs, connection strengths and external inputs,

N N N

e = /-I'2X ",V, - V,

Comparing the two expressions,
Tj, = -(BB)

and

Ik = [xk - 1/2(BkBk)]

Note that this network can be used to recognize binary images which are non-
translated, non-rotated, and non-scaled. In addition, the network is not self-adaptive. It
can be used, in conjunction with the R or M-transform to implement a pattern recogni-
tion subsystem to recognize binary images in the computation plane of a HVS sensor
which are invariant to scaling and rotation with respect to the optical axis.
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6. DUAL SENSOR IMPLEMENTATION AND ANALYSIS

6.1 Introduction

One of the major goals for machine vision systems is the development of an algo-
rithm which can perform invariant pattern recognition in real time. One method which
might be used to facilitate the solution of this problem is creating a vision system which
obtains both a rectangular and a polar representation of images. The inherent characteris-
tics of each of these geometries could be used to attain algorithms which can more easily
achieve certain pattern recognition tasks.

A rectangular representation consists of a rectangular array of uniform sized square
pixels. A representation of this type is desired for two main reasons. The first is that
translations in this representation consist of simple shifts of the coordinate axes and,
hence, translation invariant algorithms could be performed more easily. The second rea-
son is that most existing pattern recognition and motion detection algorithms are based
on a rectangular representation of images.

A polar representation consists of an array of pixels whose boundaries are deter-
mined by exponentially spaced concentric circles (for log-spiral pixels) and equally

spaced rays emanating from the center. A representation of this type is desired because
* scalings and rotations result in simple shifts of the coordinate axes and, hence, scale and

rotation invariant algorithms could be performed more easily with this representation.
Another desirable attribute of this representation is that fewer pixels are required to

- describe a given image (since pixels in the periphery are larger). So, algorithms based on
this representation should be faster.

Given the unique advantages of each of these representations it is likely that an
algorithm which utilized both of these representations could better perform invariant pat-
tern recognition tasks. Hence, an important consideration is the means by which this dual
representation of images can be obtained. This report discusses several possible methods
which might be used, and includes an analysis of the error introduced by some of these
methods.

6.2 Sensor Technology

In order to understand how a dual representation of an image can be obtained it is
necessary to know something about the existing technology for obtaining digital
representations of images. Area image sensors consist of a two dimensional array of pho-
todiodes. Each photodiode represents a pixel in the image representation. In most cases
these photodiodes are realized by charge-coupled devices (CCD's). There are two basic
ways in which pixel values can be read out from an area image sensor. One way is line
by line. A type of camera which uses this method is the frame transfer CCD imager. A
second way is pixel by pixel. A charge injection device (CID) imager is capable of this

* method. Figure 6.1 shows the basic geometry for each of these camera types.

The individual columns of the frame transfer imager are separated by insulation.
This forms the vertical boundary of the pixels. The horizontal boundaries of the pixels
are maintained by voltage rails (not shown). The shape of these pixels is usually square
or slightly rectangular. The image is integrated for one half a frame period (during which

*O the photodiodes accumulate charge proportional to the amount of light which falls within
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each photodiode's boundaries) and then the values are shifted rapidly (by the charge
transfer capability of CCD's) into a storage area which is shielded from incident light. In

1P this manner the smearing of images during read out is limited. Next. one pixei from each
column is shifted to the output register which then reads out the values. This process is
repeated so that pixels are read out line by line until all pixels are read out. In order to
speed up this output process an output register could be provided for each column. In this
way the values would still be read out line by line, however, it would be faster since each
line would be read out at the same time.

"OR SCAN GEN.

II

, , , 9
>- LIJLL1

Fig 6.1 (a) frame transfer CCD imager
(b) CID imager

The pixels of the CID imager are insulated from each other on all sides The shape
of these pixels is also usually square or slightly rectangular. The pixel values can he read
out one at a time in any order. A pixel is read out only when Noth its row, and column are
selected. This is achieved by voltage rails as seen in Fig. & 11b An obvious drawback to
this type of imager is that each pixel integrates the image at a different time This effect
can be minimized, however, by ensuring that the total read out time is small Lompared to,
the image integration time.

All standard CCD cameras produce image representations which are rettangular
However, this does not mean that other cameras could not he built which ,ield o'ther

representations directly. A novel area image sensor could he constructed to ' eM dit
ferent representations simply by changing the houndanes which define the pixels Mow
ever. constructing a CCD camera with non-rectangular 'oundanes, would prohabl,, rN),e
some difficulties for chip fabricator-, difficulties whic h ma, or ma) not he soIsable

For example, suppose a camera were desired %,hich ,ould % ield .i pxlar repreenta
tion of images directly The pixel Noundanes would have to hwXk as shown in -i- t _
One problem which exist.,, for this geometrN ts that pixel valuIe', w ould fll hat.e t4) he nri

malized since not all pixel% are the same si/e Second. a frame trinster imnaer prhahi

could not he built with this geonmetr" hek.atue there i, no onr rni net pIu e TIrltnr ' r

-.. ,, ..- , ," . , ,,',€, .,, ,f,,t ¢ ,t, ,'o.' . .. ,t~p %.. + . ,, . •



pixel values before reading them out. H-ov~eer aCDmgecould probably bcon-
structed without much difficulty. The pixels could he addressed b\. constant radius and
constant angle voltage rails.

- It also might be possible that other novel irrage sensor,, could be constncted \A.ith

many varying image representations being possible. Some ot the solutions to obtaining a
dual representation of images rely on this possibility.

togs-pi

h.- Mlethod fr ()h(aining Dual Repreieniatin of Images

Pcrhap\, ,he he%t \A i of obtamnin g Nuih i rektang II ar and t pol i rr prr-,enitin 't

IT)iizes 1AM Ju he tj devrote in indi% iduai ameri it) ea,_ h rrvrr\c n 111in .\ ,tandard tritnc
O *~rarvter CUD'I amerat could he w%ed to obtain the reL tanguiar replre',entation idire#,1 ind iu.

io~ri .cn%4r %hith it,. photOcnmr% laid (ut in a [XIIAr totIflAI ould he iised to ohtawin hr
;~4iir rpr~cnatu i uiretth il'TIh i, methi \ 4u i p'r ihk A4rk h~l\Ar er intiOrr

iirthoid \'hiLh Aould hIikei v 'cr , c pcn,i,,r ind lco htilk,\ Amuid hc it, ipe t nki

.t~rI t)htain Nith rrpre,.rntmt, 'n, I ,r rxannpie i tandar(I ('() D imenmi Oilid "uw
'Xi I 1T11 iTI ,rd 'A 4Mid -.ied the rrt tangUlar repre'ientatit 'n firrkt i nd the -*)imr

-prr'.entdatim itilhI he .ht~jjneJ , onnhininjj rekitanguiar ;)ixeI ntim frm Akh indoi\
~i, ui itr ;'I, i '~ m'i - *t .iukh p'k'ir ;)IXi~ Atmuid he ',mkef' 'i Ile the t~-r:igr .iuC

rt tw khia p x ' t Nlt %hih i' r ~ it , w i' ti ri f ' iel -k Iu jI '''f I( :t'M I 'r ;)I CI '4 1J
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* able to better obtain the dual representations. For example, a camera with triangular pix-
els might be used. Triangular pixels could be combined to perfectly form rectangular pix-
es and could probably combine to form polar pixels better than rectangular pixels could.
Thus, it might be advantageous to use a camera with triangular shaped pixels rather than
rectangular shaped pixels.

It is clear from the above discussion that a disadvantage exists in using only one
camera to obtain both a rectangular and a polar representation of images. Regardless of
the shape of the pixels of the single camera, there will always be some error in trying to
form both rectangular and polar pixels. The camera which minimizes this error might be
deemed the best solution. in order to determine the camera type (determined by the lay-
out of its pixels) which is best. a means of analyzing this error is needed. This error is
examined in the next section.

6.4 A Method to Determine which Solution is Best
The possible solutions being considered all require the superimposition of a compu-

ation plane ideternuned by the geometry of the representation desired) atop an image
plane determined b,, the geometry of the photosensors of the camera used), and the sub-
sequent combining of image plane pixels to form the computation plane pixels. This
combining is not exact, since the image plane pixels when combined together may not
exactl% form the computation plane pixel. Hence, this process can be said to add "noise"
to the ,,stem. This noise" can be quantified by considering two specific errors which

* irie from the process of combining image plane pixels to form computation plane pix-
, T Ehe,,e errors are as follows.

error one Area included in computation plane pixel
approximation which actually lies outside

the pixel boundaries.

rTi)r two Area not included in the computation plane
pixel approximation which actually lies

inside the pixel boundaries.

I cutre, t) I ind t) . in the next page illustrate these two error types for the case vhen the
' ;,e ine s, re,. tangular and a log-spiral plane is supenmposed on it.

\r, errr ,.alue ,Ahich v.il he proportional to the actua; error o approximating a
tmitati,;n plane piel th ia ormhination of image plane pixels Is

F emit e - err(,r t',oW area 4)t cnputation plane pixel)

'It' -01, ,It ,'rrI ,, me and err,,r to need\ to he normalized hN the area il the c ompilta
. .rlr p;:'c ''i-tri: .ipproxiimnaed .ince it is this ratio to Ahich the p.ssible error ,

" p ;At u pCane pixel \alue I \4ll depend on .\nother tat to note is that the map
'c , r1n11u it , n, Iiding image plane piels %kith at least one halt their area,, ,on

t.,' A l! "i I ' m , itatl n plane pixel being tpproximated tends to keep V- minima;

I' , e ,title Of I !,)r -trious image plane ce'mctnee, a mean I deter
, ' ',-,: ...... r " , : pI hie [hc idtin in -khitdi n ni:i;e\ I hor the (111pi'te
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best solution.
The next section includes an analysis of the error variable E for different image

plane geometries and computation plane geometries. The value of E is determined by
computing areas for error one and error two for each computation plane pixel approxima-
tion.

6.5 Analysis of Error for Possible Solutions
The first solution to be examined is the case where the camera used is a standard

CCD camera with square pixels. This solution is desirable for two main reasons. The first
is that many cameras are available which have square pixels, thus a new camera would
not have to be developed. The second reason is that square pixels can be combined to
form polar pixels with little extra circuitry needed. Thus, if it is found that the error intro-

*O duced by approximating polar pixels with combinations of square pixels is not so large
that the polar representation is unacceptable, then this solution would probably be recom-
mended, due to its ease of implementation.

In order to determine the amount of error introduced by this method a Fortran pro-
gram was written to calculate this error. The program first determines the square pixels

Iwhich have at least one half of their area within the given polar pixel and then determines
the value of error one and error two (defined in previous section) for each polar pixel
approximation. In calculating these values a slight approximation is used. This approxi-
mation is illustrated by the diagram in Fig. 6.5. This approximation will have only a very
small effect on values of error calculated.

The results of several computations are included in graphs one through five in
Appendix 6.A. A summary of these results is given below.

The geometry of the image plane and the computation plane for graphs one, two,
and three was:

image plane : 512x512 array of square pixels (-5 < x,y < 5)
computation plane : log-spiral array, 36 rings and 36 pixels

per ring. Radius of inner ring=0.5, and
radius of outer ring=5.0.

Graph One:
This graph shows how error one, error two, and error one + error two vary with

, qradius. For each ring the average value of these quantities was determined and plotted.
From this graph it can be seen that error one and error two tend to stay very close in
value. This is expected since pixels are included only if they have one half their area
within the computation plane pixel. Also, it can be seen that the values all tend to
increase with increasing radius. This is due to pixel sizes growing in periphery.

6-
Graph Two:

This graph shows how E (defined in previous section) varies with radius. For each
ring the average value of E was determined and plotted. From this graph it can be seen
that E is largest for small values of radius and then steadily decreases as radius increases.

"* . This shows that the approximation becomes better as the log-spiral pixels become larger,
as expected.

A'
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approximation
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' "" "Fig. 6.5 Diagram showing straight line approximation of circulararc across sqaepixel.

GraphsThree

Graph Three •This graph shows how error one, error two, and error one + error two

~these quantities was determined and plotted. It can be seen that the graphs are symmetric

,. ,,about pi/4. This is due to the number of pixels per ring being a multiple of four. This
'?-"causes the computation plane to be symmetric about pi/4 and, hence, these graphs. The

""'" values of error one and error two can be seen to be lowest at angles of 0 and pi/2. This is

-.... ,due to the log-spiral pixels sharing a boarder with the square pixels at these angles and,
"":" thus, tends to lower the value of these errors.

:.. .:Graph Four :
,/.,. image planes : 1) 60()x600 array of square pixels, (-5 < x,y < 5)

: .: 2) 500x500 array of square pixels, "
O,- 3) 400x400 array of square pixels, "
;. "* 4) 333x333 array of square pixels, "

:.,...:computation plane : log-spiral array of pixels, 36 rings and
, ,'.:,36 pixels per ring. Radius of inner ring=0.5,
... ,.radius of outer ring = 5.0

This graph shows how the curves E vs. radius vary for square arrys of different sizes. As

0,
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expected, the smaller the individual square pixel sizes, the lower E is at a given radius.

* Graph Five:
image plane : 512x512 array of square pixels, (-5 < x,y < 5)
computation planes : log-spiral array of pixels, Radius of inner

ring = 0.5, radius of outer ring = 5.0
1) 28 rings, 28 pixels per ring
2) 44 rings, 44 pixels per ring
3) 52 rings, 52 pixels per ring
4) 60 rings, 60 pixels per ring

This graph shows how the curves E vs. radius vary with different computation plane
geometries. As expected, the smaller the individual log-spiral pixels the larger E is at a

• given radius.

The next possible solution to be examined is the case where the camera used is a
standard CCD camera with slightly rectangular pixels. A program was written to analyze
this case since many of the available CCD cameras actually have rectangular pixels
rather than square. The results for this case can be found on graph six.

Graph Six :
image plane : 458x572 array of rectangular pixels, (-5 < x,y <5)
computation planes : log-spiral array of pixels, Radius of inner

ring = 0.5, radius of outer ring = 5.0
1) 28 rings, 28 pixels per ring
2) 44 rings, 44 pixels per ring
3) 52 rings, 52 pixels per ring
4) 60 rings, 60 pixels per ring

This graph shows how the curves E vs. radius vary as the computation plane geometry is
changed. The result was very similar to the result obtained with square pixels. The
smaller the individual log-spiral pixels the larger the value of E at a given radius.

The results of this graph show that the effect of the pixels being square or slightly
rectangular does not significantly alter the value of E. Thus a camera with either square
or slightly rectangular pixels could be used.

The next possible solution to be examined is the case where the camera used is a
novel sensor with triangular shaped pixels as shown in the Fig. 6.6. A camera with tr-
angular shaped pixels as shown would be desirable since the pixels could be combined to

* perfectly form rectangular shaped pixels and could probably be combined to form log-
spiral pixels better than rectangular pixels could. In order to examine this a Fortran pro-
gram was written which calculates the values of error one, error two, and E (as defined
before) for the case when the image plane has triangular pixels and the computation
plane is log-spiral. The results of these calculations are shown on graph seven, Appendix
6. A.
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Fig. 6 6 Tangular shaped pixels

Graph Seven
irnag plane -362x"1.4 arra- of triangular shaped pixels

( -5 < x~y < 5i
.omiputation planes log-spiral array of pixels. radius of inner

ring = 0.5, radius of outer ring 5 0
I -28 nngs. 28 pixels per ring
230 rings. 36 pixels per ring

-W- rings. 44 pixels per ring

This graph shows ho~h the cunbes 1: s.s radius .an- as the conwutation -laneeriec'
s.aned As expected, as the size ot the indiIdUdl log spira s. s I&1a1i~
11 at a given radius increased

In order to determine it there s an,\ .ts.ntace ir UNITmk J-k:c,.a '.. X '
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2) 458x572 array of rect. pixels
3i 362X724 arrav of tri. pixels

, computation plane l !og-spiral array of pixels, 28 rings and
28 pixels per ring. Radius of inner ring = 0.5,
radius of outer ring = 5.0

Graph Nine
Image planes 1) 512x512 array of square pixels (-5 < x,v <5)

!* 21 458x572 array of rect. pixels
3) 362x,/24 arrav of trn. pixels

computation plane : log-spiral array of pixels, 44 rings and
44 pixels per ring. Radius of inner ring = 0.5,
radius of outer ring = 5.0

These tvo graphs show how the curves of E vs. radius compare for three different image
plane geometries. The curves for square and rectangular geometries are seen to be very
close together. The curves for the triangular geometry had values for E which were for
_he most part less than the values of E for the other geometries.

Since the image plane geometries were chosen so as to make individual pLxel areas
I :he same for all three cases, it would appear that using an image plane which has triangu-

:at shaped pixels would better yield a log-spiral representation. The rectangular represen-
tation .%hich is obtained by combining two triangular pixels for each rectangular pixel
ecessanl,, creates a rectangular representation with pixels twice the size of the indivi-

m.- dual image plane pixel. Thus, the rectangular representation created would have less
re.olutIon then if a camera with rectangular shaped pixels of size equal to the triangular
-',, '1 Aere used to obtain the rectangular representation.

Another possible solution to the dual mapping problem is also analyzed as a matter
t cur-.osit, This solution consists of an image plane with log-log shaped pixels as shown

* .:7 Fig 6v- A camera which had its photosensors laid out in this manner would obtain a
.,g og representaton of images. A log-log representation of images is essentially a rec-
'ar--ular representation Nith a similar characteristic of log-spiral representations. That is.
. ."e.\ :n the penpher. are larger. Thus less pixels are required to describe a given image
Arx: a;conthms w, hich usc this representation should be faste. In order to determine how
"i ,e'.og og shaped pixels combine to form a log-spiral representation, a Fortran pro-

'ram as ,ntten which calculates values of error one, error two, and E (as defined
. ,or the case w&hen the image plane is log-log shaped and the computation plane is

., .rai The results of these calculations are shown on graph ten, Appendix 6.A.

(,raph Ten
* "- :': : ,,nc 21'0 2W irra ,t log log sharvd p eils. -5 < Y,,, < 51

- u .ianc *og. piral arral, of piels, radius of inner
, -adius )i outer nng= 5

- ' " n~z. > pixcl, per nng

-, 4 ~ -, , .. 1 C p.., -r "ing

Al
'm&.4
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Fig. 6.7 Log-log shaped pixels

This graph shows how the curves E vs. radius vary as the computation plane geometry~ i,,
altered. As expected, as the size of the individual log-spiral pixels decreased the value ot
E increased for a given radius. The values of E are significantly higher than those found
f .or similar cases in which square and triangular shaped pixels were used. However, this
does not mean that a log-spiral representation obtained from combining log-log shaped
pixels would not be adequate. This will depend on the particular application being con-
sidered.
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6.h6. Op eratim of tha nalbe summing arrangement I Fig 6. 9

1 Athe Abeginning th at pixel-sumn cyle the A-~ regsr i ero, n he "'i 'ueY

dn ,hnet un lnith i loaded with the ru-length of th nex plar pixel

* i Opera~+,tion " C'; hln u"es ,t ,ll pxe ( n th urn faefj nr

* h A the bering .ohf na pl-nummg cyhle pth ,al regstr, is',. and theI CO+lrnt

¢zr- th+~dow anIdS, itrs ae ldgled surh, the runngthl, the. ne, t pl, r, pier,,;-

* 1 ) As each rectangular element is shifted in, it is passed through the A/D converter and
ummed in AL.L . The results of each addition are placed in register A so that a

..
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* Figure 6.9. Digita pixel-summing arrangement.

cumulative sum may be obtained. Also, the count-down register is decremented.
*3) When the count-down register indicates that the last element has been summed, the

* '** -total is divided (in ALU2) by the run-length for that. pixel (stored in the S register),
*thereby forming the average pixel Intensity.

4) The cycle continues until the entire frame has been read.
- A simple example of this operation follows. We will use the second approach (digi-

ta summing) and detail the operation in a clocked fashion. Assume a single- or multi-

S %

, ,°&A
)
•  

.. ~ -~ - -
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phase locking arrangement in which, during each complete clock cycle, a sing- rec
tangular element is shifed out of the sensor and both AL s are ahie to perlorm 'her

7- required funcuons tif called upon to do w). We also assume that the hardare requires
one extra clock cycle to perform the set-up operations necessars prior to summing the
elements which form a particular pixel. For this example, the run-lengths of the hrst
trree polar pixels to be extracted (all that we wiU consider at this ume are 4. 1'. and 32

, compietely arbitrary at this point since we do not know the layout of the polar pixels)
Simulation is as follows (clock cycle followed by functons performed)

I Zero ROM address. Load count-down and S registers with run-length of
tirst polar pixel to be shifted out 4). Clear the A register.

2) Shift first rectangular element into Av D convener (flash converter) and add
output to value in the A register (0). Store result in the A register. Decre-
ment count-down register. Count-down register does not equal zero (vet SO

* continue.

31 Shift next rectangular element into A/D convener and add output to value in
the A register. Store result in the A register. Decrement count-down regis-
ter.

S4) Same as 3).

5) Same as 3). However, now the count-down register is zero. Therefore,
divide the output of ALUI by the contents of the S register (the run-length)
in ALU2 to form the average pixel intensity. Store this in memory.

6) Increment the ROM address to point to the next run-length. Load the count-
down and S registers with the next run-length (17). Clear the A register.

7) Shift first rectangular element of the next polar pixel into the A/D convener
" and add output to value in .the A register (0). Store result in the A register
% Decrement count-down register.

8) Shift next rectangular element into AD converter and add output to value in
the A register. Store result in the A register. Decrement count-down regis-

:- ter.

conunue...

23) Shift next rectangular element (17" in this pixel) into A/D converter and add
-9 output to value in the A register. Store result in the A register. Decrement
.1% count-down register. Count-down register is now zero. Therefore, divide

the output of ALUI by the contents of the S register (17) in ALU2 to form
the average pixel intensity. Store this in memory.

24) Increment the ROM address to point to the next run-length. Load the count-
down and S registers with the next run-length (32). Clear the A register.

25) Shift first rectangular element of the next polar pixel into the A/D converter
and add output to value in the A register (0). Store result in the A register.
Decrement count-down register.

S%.1',

,...,

j6 *,A,. k J~m %~~ ~V*V - ~ *9 VV *V



5 r~ ' ' *ir i ' '' i l'

.')C ' I ,' .,tihC ; 'i n %r ki'11etor h h'. 1 , "rii l 'r r

* ')r. .r tici! h t r( 1 1' I * t' t t' ' 'h e 1, 11 r7 l l , '' '"
" t) tiT tl h lt- 'r R i~ l, i # h e', i ril'l I

-,A-' tnl '- -rc: trr, A4i!h ~ r~h i t~

i " itf !i ( rt It r T

t '.1 1m rit r I it ;' . \ t a '. I; . It lldj Cif A ,' I; I 1, c tI Il 1 'CA '4'

ClCI.im the innerniost ring Mt the poihir it-T~ingemewnt iui% c 'hc ti~miwt -tIre

"c " lI ,rW tii m lt trini" the ,tileq number if rettrngular cem nt\ ( "owrijur!

oIl ng Inlderations, and ernit *nal,,%i\ must he pertormed isins: ihesc pixel,, T'f.it th:t.
t emit inal is \ es ideni troam an averagintg point 'i) irs "irKc the ujpor ,

.t'si\sill he the as-eriige inten~it, of the rettangulr cee,r-iv, sAhtisc venterN ic

. lthl n :t\ h)rer, the anller the area it the polar pi e . the grr c ! - he the errir 'it

,rr'r \-irant e r t the c,tima ied intensitv \N for timing oansidec it on%. '.ini .one ,i h'k

.;c i W4asted in preparation tar each polar pixel (prepanng trht hardarr tol tUnl And

i,.er,1ge the in.oming rectangular elements), the smaller the polar pixel area. the izreier

Ali! he the .lock cycle overhead expended. !tence. the dependence ait timing .n,,idera

- 'on,, (n the innermost nng of polar pixels (smallest polar pixels) , iustifhed

rhe subject at error analysis is one which must certainly he disLiu,',ed since there
2'il never he a perfect fit of rectangular elements into any given polar pivel It is this,

,irea sihich \,e will now address All analysis will he performed using An arc ot nngs,

,onhguration for the logarithmic-spiral sensor The (CD sensor 6ill1 consist ait NS,
Ailuare light-snsitive elements (the term rectangular. when used. reters to the oerill

sensor configuration rather than actual pixel dimensions)

6.7 Error Anallysis

As seen in Fig. 6.4, there is never a perfect fit of rectangular elements into polar pix
*, els. We have chosen to assign a given rectangular element to a polar pixel if its center is
* siithin the defined boundary of that pixel. So, not only will there be error in th! area
S:overed by the rectangular elements, but some of the intensity information attributed to a

given pixel will be from outside its boundary. Furthermore, any actual error analysis
must necessarily rely on the specific arrangement and resolution of the polar pixels and

t "rectangular elements. That is, in a given rectangular array of elements, the number of

I
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1: kc ,le, de t, inlude tho,,e error e',ents which are het\,een one and tto pixels
c, 'rorn :he aCtual polar pixel area (termed double' errors). %,e must, once again

--,.r:ne ,OMC dt1trIbution ot these events ,o that the average area converges to the actual
2::,.C trea There are too man,, ,ariahles (the problem is under-constrained) so .e must
-,w,train some so that a unique solution is possihble. Therefore, we \,ill assume that the
:,.,,Prion o)t errors of magnitude Il-co to those of magnitude 12- i Is such that their
trerage i, also iero Further. %e can assume that these "double' errors account for a por-
' 3. ,t all error e, ents An accounting of the quantity and magnitude of each of these
S'm , e,,ent, ,, i:i,.en helo. (per N, polar pixels, error normalized)

error rnagnitude quantity
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For 03=0, this reduces to the former case in which we considered cmlv 'in-gle error
e% ents. For the worst case, 5= 1, a=.5, the approximate sampled vanance is
* 2.25 N

(N P- I A'

- ~ hich is nine times larger than the worst case ((x=.5) for single error events only.

Choosing a maximum allowable variance of, say, 5%, Figs. 6. 10 and 6.11 sho\, ho\A,
the number of rings, N,, relates to the number of polar pixels per ring, N for arrays of

* size 512A 512 and 1024x 1024 pixels. Plots of P=O and P=.25 are shown. Increasing either

N, or N Pwill increase the error variance -- an adverse effect. Figure 6.12 shows how the
ar-ea of the pixels on the innermost ring of the polar array relate to the error variance.
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Figure 6. 10. Pixels/ring vs. Number of rings for
5/. Error Variance = .05 (512 x 512 pixels)
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:Intdu N N in opti 'l I h on

* Anaionnm fo the detrminatinot"th t-t[, v.=tield ,.a,', .,"¢ :' .O]; .ii¢ """. .it.,me .ion ", ,:h ...-

-.- -'. eainaton ot he prbem Ahihanti s omputat~o , [),p,¢ mr ito.. .. :,d, Po:hie ,h \iiO.:'.1.

"-- ~correlate,, or optic tI'A computanons ,Aill he presented next f-,nail,, a ney. approa> :,,
-.-. , the problem u.,ing the BVS and spherical .,,mmetr, v il he exatmined

S7.20 erview of Current Research

. .... Work on the detenrmnation of object structure and depth from ENI has dee,,.ped
-.'- rapidly over the last decade. Various ,,chemes have been prtrprsed for the determnation

,...'.of optical flow and the extractor of information trom the drav feld A g:eneral ,:nticis,
*. of most current work is that !he proposed schemes are computionally ntense and

_,t, "therefore of limited usefulness in real-rime applications Rather than re ie', this work in

. a detail, however, we will atte'ipt to provide a general understanding ot the current para-
digm by exarmning the work of selected researchers.

,"Prazdn [2-4] has made significant conmbutions to this field. He nalyzes opic

* . flow in terms of the projection of a six parameter transformation Ithree translatinal and
three rotational parameters) in a Cartesian coordinate system. Prazdnv has

0oO .

ofotclfo n heetatro"nomtinfo h l\ ildAgnrl.-tcs

"J' .. +. ~o m .- . . .- =-ost curen wor is. . .. .- .%". . .%- .- that th prpoe schemes., &re computationally -%%-%--.can



.,, AtU -d n: , :har. thouch the in,,tan-

- ~ ~ ~ ~ ~ ~ ~ O Obc." :.'I~n..t I o ra~n,,- ",,- ', -<Pc.. ''e .i-." e:':C° ° rt. '"' , -Per',.r. ot ohcc ,, :.

"" -. ." ' 'C -7 -Z."c '"' :rt\ :a± 4~ t , 2t:. )rt \2

-:: .. , < .t:,', .- , co,"', .1-e . a~i~i e at LI[ ."m:a :,-<arons

' ... i: ,"e. ,, are 7ni'd

,:, . *,,, :'-C re7:r:a 'e :h *e .t o the :enter of gaze is known.

-., , .- 'r-,, ,Je -: :ne tretton and t ragniltude of motion for
S '....... : :. : ... . ,r' The Jete rniinaion ot :hese vectors is, of itself, a

. -., :-.,e a ,,,eme ,or deterrmnit htth the ;trncture of 3D space and
,, - wt :,.,r o : ecs :n :e VF He unhlzes a t'wo stage process. The

... . c":-c , - e o ..,. ,, neid and the ,econd ,tage interprets this field,
- - ,-- .,t "' . ,x'.: :ne ,,i:rr and mr otion parameters.

:at ,,ta' 9(- eds are nois' in the sense that velocity vectors
S. - ,..c ;, .. e. ard an,,_ :hat :his :ead to a loss or corruption of the available

.. .:-.-,-- \ ,t"or erl., i sne, ithere are multiple ohiects in the field of view.
V, - 0 . .. :,<on . h h eads to ngulanties (discontinuities) in the flow field.

.- : ,.re :::lta must be robust enough to handle these sorts of

k pr&acz nr- t ar'1tons the fio, field into connected segments. These seg-
-- w. :,r t -e ,'erced Ander the ,%v-thesis that segments .,ith similar characteristics

:ne .atr e .r"%--' mo, ing oh1ect

. n"e . .:rr.m ,earne- for D motion parameters Ahich ,,atisfy all segments within
7'1(,--1,. .Ct Rkatie depth i-. then obtained from these parameters. This scheme is
-c.: : C -\. tou, :o :he presnce of noise and. in addition, can handle cases where

,, et., :the .ievk are mo ing independentl., in addition to the EM)
.ain ani ,i, -oiieagues ItJ have also exanuned the computation of the relative depth

[AlrF' Their ,Aork is ot particular interest in that they utilize a polar coordinate sen-
,,,r ceomet,- rather than the common rectilinear geometry used by other workers. When
",appea to a -omputation plane via a conformal complex logarithmic mapping optical

ck" an he anal'.zed as a single dimension i'i motion This depends, however, on the
I LOS being identical to the FOE. thus being a radial flow. If the LOS diverges only

,:ichtrI from the FOE. the method] falls due to distortions in the optical flow pattern.

".3 ('omputation of Optical Flow
-he work discussed above assumes that fairly accurate flow field information is

* -iJilable Obtaining t,,s information, however. is a significant problem. A number of
,themes are avilable for computing determination of correspondences for prominent
features of the image across frames. The main drawback to this approach is that general
,olutions to the correspondence problem do not exist. Thus, these methods tend to be ad
hoc or domain specific.

* - Buxton & Buxton 171 have presented an approach which assume, that changes in
the intensity function are due only to the motion induced by the EM. The optic flow data

6,
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can then be obtained by a low-level spatio-temporal difference of Gaussians (DOG) filter
to compute the location of moving edges within the input. Our group has used this filter
previously and shown its usefulness [8]. The DOG filter determines zero-crossings
(second derivative of the intensity factor) which are equivalent to edge information.
Optic flow is obtained from the zero-crossing data through a least squares procedure.
This results in the computation of what Buxton and Buxton term vernier velocities.

A major difficulty with this approach is that it is computationally intensive, requir-
ing the performance of approximately 50,000 convolutions for each 128 X 128 frame
pair. Significant savings in computation time, however, can be achieved through the use
of parallel processing.

7.4 Physiological Correlates of Optic Flow Computation
The importance of 3D computation from optic flow for biological organisms indi-

cates that the nervous system should contain specialized mechanisms for performing this
function. The available evidence indicates that these mechanisms may involve multiple
visual areas of the cortex, primarily area 18 and the inferior parietal visual area.

An examination of the distribution of velocity sensitive cells in area 18 indicates
that within 10 degrees of the area central is the major proportion of cells are velocity

O_  tuned [9]. These cells are bandpass for velocity and generally are directionally sensitive.
These properties are well suited for the detection and tracking of object motion. Beyond
10 degrees eccentricity, the proportion of velocity tuned cells decreases rapidly and the
major proportion of cells are velocity highpass, with orientation but not direction selec-
tivity [9]. These cells show responses that are linearly increasing with the log of the
velocity. These properties are well suited for the computation of optic flow.

Parietal visual neurons (PVNs) have been extensively studied by Mountcastle and
his colleagues [10]. PVNs have large, bilateral receptive fields and are responsive to
motion but apparently are not velocity tuned. PVNs have a complex "opponent radial"
receptive field organization [10]. They are sensitive to motion either toward or away
from the center of their receptive fields along some preferred axis. In addition, these
cells can show differential responses as a function of whether or not the motion crosses
the center of the field.

PVNs are excellent candidates for the performance of higher level processing of 3D
space. Whereas area neurons may function in the determination of optic flow, PVNs,
which are afferently connected to area 18, may utilize this information in the construc-
tion and maintenance of a 3D model of the environment. This idea is strengthened by the
fact that parietal lesions can result in severe impairments of spacial processing and visu-
ally guided behavior [10].

7.5 An Approach to 3D Computation from EM

It was pointed out in previous discussions that virtually all schemes for determining
depth from EM depend on an alignment of the line of sight and the focus of expansion.
As the LOS deviates from the FOE, the radial flow of the image becomes progressively
distorted toward lateral translation over the visual field. This distortion complicates the
determination of the optic flow, so that some schemes [e.g. 3D] incorporate methods for

07 locating the FOE within the flow. We are developing an approach which eliminates this

%0
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problem and allows the determination of depth regardless of the LOS/FOE relation.
N.. An important aspect of our approach is the determination of a 3D reference frame.

* Most previous work computes 3D motion relative to a set of predefined 3D coordinates.
We claim that a coordinate system can and should be determined on the basis of the optic
flow itself. This provides for greater adaptability of the visual system and allows the
recalibration of the 3D model of the environment following disorientation.

Our approach involves four primary components.
* 1) Flow Field Detection. The BVS sensor will be used for the detection of image

motion. Two possible schemes for the detection of motion are i) the use of the spatio-
temporal DOG filter or ii) an adaptation of the correlation method developed by
Narathong [see section).

2) Mapping to Computation Plane. The use of the BVS sensor allows the use of the
-Iconformal complex logarithmic mapping to the computation plane. We propose that the

computation "plane" be conceptually understood as the surface of a sphere, defined by
three parameters, I, - and r. This sphere is oriented such that the direction of motion is
always aligned with its polar axis. Then the parameter I corresponds with lines of lati-
tude, - corresponds with the longitude lines and r represents the radius of the sphere.
This sphere can be represented as a two dimensional (I and -) surface where 0<l <x and
0<-<2x.

3) Organization of the Flow Field. The spherical computation plane reflects the
invariant geometry of the flow field in that, under EM, all world objects visually move
along arcs from the FOE to the FOC. Thus, since the polar axis of the sphere is aligned
with the direction of sensor motion, all image motion can be analyzed in terms of motion
along a single dimension (1). This, however, depends on the proper pattern of activation
of the computation plane. Given a limited VF, it must be mapped to the computation
plane across an area that is congruent with the orientation of the VF relative to the direc-
tion of the EM. Since individual points are ambiguous with respect to this function, this
organization will depend on the relation between velocities the entire VF. This entire

* issue is eliminated, however, if we allow the receptor surface to be a sphere as well. In
this case, the receptor and computation planes are always congruent. This is very similar
to the situation found in insect vision, e.g., dragonflies, or other animals with 360 degree
VFs.

4) Computation of Depth. Given the congruence between the sensor array output
* and the computation plane, activity levels at each point in this plane will be proportional

to the distance of some surface element from the sensor along the line of sight
represented by that location in the computation plane.

These four stages, motion detection, mapping, flow field organization and depth
computation provide the basis for thedetermination of 3D spatial structure and motion

* -from EM. This system is relatively simple in its basic construction due to the advantages
of the BVS and log conformal mapping for the determination of radial motion.
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8. VESTIBULAR-OCULAR MOTION FOR TARGET TRACKING

*I Models of human eye movement have been studied. There are many features
displayed in the abilities of biological systems which could be exploited in the design of
a biological visual sensor. Among these seem to be the accuracy with which animals areable to track target motion and, in particular, the periodic movement of targets. It should
be mentioned at the outset that, though accurate models of this behavior appear to have
been made, their usefulness is doubtful. The most recent of these models studied, which
incorporates features of its predecessors, relies on methods of estimation of target motion
from past observations. Whereas this model performs well in the tracking of regular tar-
get motion, the advantages seem small. The models will be discussed nonetheless.

Young and Stark [1] proposed a model of human smooth pursuit and saccadic eye
movements as a sampled-data control system. No attempt was made to handle regular
periodic motion in any fashion other than that used for non-periodic target movements.
The eye movement signals for these two types of motion are generated in parallel and are
additive. Smooth pursuit motion is stimulated by the retina velocity error between target
and eye movements, whereas saccadic motion is generated by retinal position error.
Their model incorporated these known features, even delaying the saccades by one sam-

4C pling period (=200ms) from the time the position error was measured, in agreement with
experimental results. This model simulated actual eye movement to non-periodic motion
very well.

Eckmiller [2] discussed Neural Control of Foveal Pursuit and Saccadic eye move-
ments. He was concerned with the synaptic paths and signal generation methods which
characterize the primate oculomotor system and its ability to pursue moving visual tar-
gets or direct their optical axis towards briefly presented stationary targets. His proposed
model incorporated a sequence of three major functional areas. They are the spatiotem-

* . poral translator, the motor program generator and the neural integrator blocks.
Spatiotemporal Translation is concerned with the transformation of spatial position

O error information of retinal signals into a smooth pursuit velocity error. The article
placed major emphasis on defining the "neuroanatomical architecture" (which defines the
connections between input neurons, representing specific retinal locations, and output
neurons of the Spatiotemporal Translator) as vital to the realization of the Spatiotemporal
Translator.

The spatiotemporal Translator provides signals to the Motor Program Generator
(MPG), the second block of the signal pathway. Eckmiller sites the MPG's as the source
of time courses of neural activity. That is, oculomotor activity is in response to signals
generated in the MPG's, regardless of current input from the Spatiotemporal Translator
block. (The Spatiotemporal Translator supplies signals to the MPG for interpretation.) It

- is in the MPG's that models of regular waveforms are generated so that the eyes can fol-
4 - low targets (which follow such waveforms) without any latency or error. "Very little is

known about the the neural realization of different motor program generators,' and so it
is in this area that much research needs to be done.

of Eckmiller concludes that further simulation of these models requires the resolution
of fundamental questions concerning biological systems. Specifically, how the motor
program generator stores and updates different motor programs for smooth pursuit
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movement is not known. Further, the mathematical algorithm of the neural predictor
mechanism must be researched.

A third model, by Bahill and McDonald [3], called the "Target Selective Adaptive
control" (TSAC) model, aims to describe human eye movement in response to periodic
target motions. In addition to the smooth pursuit and saccadic branches, this model
incorporates a "TSAC" branch to estimate target motion and provide the eye with a suit-
ably time-advanced version of the motion so that, after the predictable delays of the eye
mechanism have occurred, eye movement stays locked on to target position. This model
was simulated not with a "library" of acceptable input waveforms, as the authors pre-
ferred, but with a finite differences method of target motion estimation. It was able to

". -i .formulate an equation describing target motion using n+1 samples for an nth order input
waveform. Problems occurred if the periodic waveforms were corrupted with even small
levels of noise.

As mentioned above, it is not deemed necessary to incorporate these estimation
techniques into the BVS as their gains are marginal. Conventional position control
methods should provide adequate sensor orientation and are not fraught with the noise
problem to which we have alluded.
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UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There

*. . are 150 faculty m -rbers, a majority of whom conduct research in addition to teaching.
Research is a vital part of the educational program and interests parallel academic specialties.

These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,

*) Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.
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